• Betts, A. K., , and M. J. Miller, 1993: The Betts-Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , G-J. Huang, , V. Chandraesekar, , and T. D. Keenan, 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-Band radar and a dense gauge network in the tropics. J. Atmos. Oceanic Technol., 18 , 18101818.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , T. Tang, , and V. Chandraesekar, 2004: Evaluation of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21 , 612622.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., , T. D. Keenan, , J. Wilson, , and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128 , 34593480.

    • Search Google Scholar
    • Export Citation
  • Chen, S-H., , and W-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80 , 99118.

  • Crook, A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129 , 15501563.

  • DelGenio, A. D., , and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15 , 25972615.

    • Search Google Scholar
    • Export Citation
  • Done, J., , C. A. Davis, , and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–92. J. Climate, 9 , 8596.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1993: A numerical investigation of tropical island thunderstorms. Mon. Wea. Rev., 121 , 14171433.

  • Grell, G. A., , and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 16931696.

    • Search Google Scholar
    • Export Citation
  • Gunn, B. W., , J. L. McBride, , G. J. Holland, , T. D. Keenan, , and N. E. Davidson, 1989: The Australian Summer Monsoon Circulation during AMEX Phase II. Mon. Wea. Rev., 117 , 25542574.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , R. A. Vincent, , and P. T. May, 2004: Darwin Area Wave Experiment (DAWEX) field campaign to study gravity wave generation and propagation. J. Geophys. Res., 109 , 115.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , J. L. McBride, , R. K. Smith, , D. Jasper, , and T. D. Keenan, 1986: The BMRC Australian Monsoon Experiment. Bull. Amer. Meteor. Soc., 67 , 14661472.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , and J. Dudhia, 2003: Testing of a new nonlocal boundary layer vertical diffusion scheme in numerical weather prediction applications. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 17.3. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_72744.htm].

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , R. Pincus, , C. Hannay, , and K-M. Xu, 2004: Use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res., 109 , D03202. doi:10.1029/2003JD003473.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. Tech. Rep. 437, NCEP Office Note, 61 pp. [Available from NCEP, 5200 Auth Rd., Camp Springs, MD 20746].

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection In Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , S. J. Weiss, , J. J. Levit, , M. E. Baldwin, , and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL spring program 2004. Wea. Forecasting, 21 , 167181.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., , and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 , 283326.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., , B. R. Morton, , M. J. Manton, , and G. J. Holland, 1989: The Island Thunderstorm Experiment (ITEX)—A study of tropical thunderstorms in the maritime continent. Bull. Amer. Meteor. Soc., 70 , 152159.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., , K. Glasson, , F. Cummings, , T. S. Bird, , J. Keeler, , and J. Lutz, 1998: The BMRC/NCAR C-Band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15 , 871886.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81 , 24332455.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. J. Reeder, 2001: Modelling the generation of gravity waves by a maritime continent thunderstorm. Quart. J. Roy. Meteor. Soc., 127 , 27052724.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C., , Z. Yang, , and R. A. Pielke, 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113 , D09112. doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, northern Australia). Mon. Wea. Rev., 135 , 8292.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , J. H. Mather, , G. Vaughan, , C. Jakob, , G. M. McFarquar, , K. N. Bower, , and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89 , 629645.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Neale, R., , and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16 , 834848.

  • Pautet, P-D., , M. J. Taylor, , A. Z. Liu, , and G. R. Swenson, 2005: Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. J. Geophys. Res., 110 , D03S90. doi:10.1029/2004JD004954.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2002: A description of the advanced research WRF version 2. Tech. Rep. NCAR/TN-468+STR, NCAR Tech Note, 88 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307].

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. Tech. Rep., 5 pp. [Available online at www.atmos.washington.edu/~stoeling/RIP_sim_ref.pdf].

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , L. Zhou, , and K. P. Hamilton, 2007: Effect of convective entrainment/detrainment on simulation of tropical precipitation diurnal cycle. Mon. Wea. Rev., 135 , 567585.

    • Search Google Scholar
    • Export Citation
  • Wapler, K., , T. Lane, , P. May, , C. Jakob, , S. Siems, , and M. Manton, 2008: WRF model simulations of tropical cloud systems observed during TWP-ICE. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 11D.1. [Available online at ams.confex.com/ams/pdfpapers/137320.pdf].

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , and H-M. Hsu, 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , C. Davis, , W. Wang, , K. W. Manning, , and J. B. Klemp, 2008: Experimences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23 , 407437.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Zhang, M. H., , J. L. Lin, , R. T. Cederwall, , J. J. Yio, , and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129 , 295311.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 1
PDF Downloads 8 8 1

Cloud-System-Resolving Model Simulations of Tropical Cloud Systems Observed during the Tropical Warm Pool-International Cloud Experiment

View More View Less
  • 1 The University of Melbourne, Melbourne, Australia
  • | 2 Centre for Australian Weather and Climate Research, Melbourne, Australia
  • | 3 Monash University, Clayton, Australia
© Get Permissions
Restricted access

Abstract

Nested cloud-system-resolving model simulations of tropical convective clouds observed during the recent Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are conducted using the Weather Research and Forecasting (WRF) model. The WRF model is configured with a highest-resolving domain that uses 1.3-km grid spacing and is centered over Darwin, Australia. The performance of the model in simulating two different convective regimes observed during TWP-ICE is considered. The first regime is characteristic of the active monsoon, which features widespread cloud cover that is similar to maritime convection. The second regime is a monsoon break, which contains intense localized systems that are representative of diurnally forced continental convection. Many aspects of the model performance are considered, including their sensitivity to physical parameterizations and initialization time, and the spatial statistics of rainfall accumulations and the rain-rate distribution. While the simulations highlight many challenges and difficulties in correctly modeling the convection in the two regimes, they show that provided the mesoscale environment is adequately reproduced by the model, the statistics of the simulated rainfall agrees reasonably well with the observations.

* Current affiliation: Deutscher Wetterdienst, Offenbach, Germany.

Corresponding author address: Kathrin Wapler, Deutscher Wetterdienst, GB Forschung und Entwicklung, Frankfurterstr. 135, 63067 Offenbach, Germany. Email: kathrin.wapler@dwd.de

Abstract

Nested cloud-system-resolving model simulations of tropical convective clouds observed during the recent Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are conducted using the Weather Research and Forecasting (WRF) model. The WRF model is configured with a highest-resolving domain that uses 1.3-km grid spacing and is centered over Darwin, Australia. The performance of the model in simulating two different convective regimes observed during TWP-ICE is considered. The first regime is characteristic of the active monsoon, which features widespread cloud cover that is similar to maritime convection. The second regime is a monsoon break, which contains intense localized systems that are representative of diurnally forced continental convection. Many aspects of the model performance are considered, including their sensitivity to physical parameterizations and initialization time, and the spatial statistics of rainfall accumulations and the rain-rate distribution. While the simulations highlight many challenges and difficulties in correctly modeling the convection in the two regimes, they show that provided the mesoscale environment is adequately reproduced by the model, the statistics of the simulated rainfall agrees reasonably well with the observations.

* Current affiliation: Deutscher Wetterdienst, Offenbach, Germany.

Corresponding author address: Kathrin Wapler, Deutscher Wetterdienst, GB Forschung und Entwicklung, Frankfurterstr. 135, 63067 Offenbach, Germany. Email: kathrin.wapler@dwd.de

Save