• Atkins, N. T., , and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6 , 470482.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., , T. L. Mote, , and S. F. Byrd, 2000: A synoptic climatology of derecho producing mesoscale convective systems in the north-central Plains. Int. J. Climatol., 20 , 13291349.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , C. A. Doswell III, , and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effects on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88 , 117135.

  • Bryan, G. H., 2002: An investigation of the convective region of numerically simulated squall lines. Ph.D. thesis, The Pennsylvania State University, 181 pp.

  • Bryan, G. H., , and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130 , 29172928.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Knievel, , and M. D. Parker, 2006: A multimodel assessment of RKW Theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134 , 27722792.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. R. Braham, 1948: Thunderstorm structure and circulation. J. Meteor., 5 , 7186.

  • Carr, F. H., , and J. P. Millard, 1985: A composite study of comma clouds and their association with severe weather over the Great Plains. Mon. Wea. Rev., 113 , 370387.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., , M. C. Coniglio, , S. F. Corfidi, , and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22 , 10451062.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., 2000: A quantitative investigation of entrainment and detrainment in numerically simulated cumulonimbus clouds. J. Atmos. Sci., 57 , 16571674.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , D. J. Stensrud, , and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19 , 320337.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., , M. Xue, , J. A. Milbrandt, , M. K. Yau, , and G. Zhang, 2007: Impact of multi-moment microphysics and model resolution on predicted cold pool and reflectivity intensity and structures in the Oklahoma tornadic supercell storms of 3 May 1999. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10B.2.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., , M. Xue, , and J. A. Milbrandt, 2008: Improvements in the treatment of evaporation and melting in multi-moment versus single-moment bulk microphysics: Results from numerical simulations of the 3 May 1999 Oklahoma tornadic storms. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 17B.4.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Doswell III, C. A., , and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132 , 853863.

  • Duke, J. W., , and J. A. Rogash, 1992: Multiscale review of the development and early evolution of the 9 April 1991 derecho. Wea. Forecasting, 7 , 623635.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Evans, J. S., , and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16 , 329342.

    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., , and R. C. Miller, 1954: A basis for forecasting peak wind gusts in non-frontal thunderstorms. Bull. Amer. Meteor. Soc., 35 , 1419.

    • Search Google Scholar
    • Export Citation
  • Foster, D. S., 1958: Thunderstorm gusts compared with computed downdraft speeds. Mon. Wea. Rev., 86 , 9194.

  • Gilmore, M. S., , and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126 , 943958.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132 , 18971916.

    • Search Google Scholar
    • Export Citation
  • James, R. P., 2009: A numerical investigation of the effects of dry air aloft on deep convection. Ph.D. thesis, The Pennsylvania State University, 156 pp.

  • James, R. P., , P. M. Markowski, , and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134 , 950964.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., , and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2 , 3249.

  • Johns, R. H., , and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., , and R. A. Houze, 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125 , 12091229.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., , G. H. Bryan, , R. Rotunno, , and D. R. Durran, 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64 , 15301549.

    • Search Google Scholar
    • Export Citation
  • Kuchera, E. L., , and M. D. Parker, 2006: Severe convective wind environments. Wea. Forecasting, 21 , 595612.

  • Lafore, J-P., , and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46 , 521544.

    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., , and T. T. Warner, 1991: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring. Part I: Structure, dynamics, and seasonal evolution. Wea. Forecasting, 6 , 181197.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , and E. J. Zipser, 2000: Environmental variability during TOGA COARE. J. Atmos. Sci., 57 , 23332350.

  • Lucas, C., , E. J. Zipser, , and B. S. Ferrier, 2000: Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci., 57 , 23512373.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Mapes, B. E., , and P. Zuidema, 1996: Radiative-dynamical consequences of dry tongues in the tropical atmosphere. J. Atmos. Sci., 53 , 620638.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., , and Y. Richardson, 2007: Observations of vertical wind shear heterogeneity in convective boundary layers. Mon. Wea. Rev., 135 , 843861.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., , and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., , and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130 , 17221748.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137 , 9911007.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., , K. Yoneyama, , and J-L. Redelsperger, 2000: The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126 , 517548.

    • Search Google Scholar
    • Export Citation
  • Punkka, A-J., , J. Teittinen, , and R. H. Johns, 2006: Synoptic and mesoscale analysis of a high-latitude derecho-severe thunderstorm outbreak in Finland on 5 July 2002. Wea. Forecasting, 21 , 752763.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , M. J. Miller, , and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108 , 739762.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , W. C. Skamarock, , M. A. LeMone, , D. B. Parsons, , and D. P. Jorgenson, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci., 53 , 28612886.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49 , 18261847.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57 , 14521472.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , J. B. Klemp, , and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45 , 19902013.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105 , 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 127 127 18
PDF Downloads 117 117 16

A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

A three-dimensional cloud model was used to investigate the sensitivity of deep convective storms to dry air above the cloud base. In simulations of both quasi-linear convective systems and supercells, dry air aloft was found to reduce the intensity of the convection, as measured by updraft mass flux and total condensation and rainfall. In high-CAPE line-type simulations, the downdraft mass flux and cold pool strength were enhanced at the rear of the trailing stratiform region in a drier environment. However, the downdraft and cold pool strengths were unchanged in the convective region, and were also unchanged or reduced in simulations of supercells and of line-type systems at lower CAPE. This result contrasts with previous interpretations of the role of dry air aloft in the development of severe low-level outflow winds.

The buoyancy-sorting framework is used to interpret the influence of environmental humidity on the updraft entrainment process and the observed strong dependence on the environmental CAPE. The reduction in convective vigor caused by dry air is relatively inconsequential at very high CAPE, but low-CAPE convection requires a humid environment in order to grow by entrainment.

The simulated responses of the downdraft and cold pool intensities to dry air aloft reflected the changes in diabatic cooling rates within the downdraft formation regions. When dry air was present, the decline in hydrometeor mass exerted a negative tendency on the diabatic cooling rates and acted to offset the favorable effects of dry air for cooling by evaporation. Thus, with the exception of the rearward portions of the high-CAPE line-type simulations, dry air was unable to strengthen the downdrafts and cold pool.

A review of the literature demonstrates that observational evidence does not unambiguously support the concept that dry air aloft favors downdraft and outflow strength. It is also shown that the use of warm rain microphysics in previous modeling studies may have reinforced the tendency to overemphasize the role of dry air aloft.

Corresponding author address: Richard P. James, Prescient Weather Ltd., 200 Innovation Blvd., Ste. 257, State College, PA 16801. Email: rpj105@earthlink.net

Abstract

A three-dimensional cloud model was used to investigate the sensitivity of deep convective storms to dry air above the cloud base. In simulations of both quasi-linear convective systems and supercells, dry air aloft was found to reduce the intensity of the convection, as measured by updraft mass flux and total condensation and rainfall. In high-CAPE line-type simulations, the downdraft mass flux and cold pool strength were enhanced at the rear of the trailing stratiform region in a drier environment. However, the downdraft and cold pool strengths were unchanged in the convective region, and were also unchanged or reduced in simulations of supercells and of line-type systems at lower CAPE. This result contrasts with previous interpretations of the role of dry air aloft in the development of severe low-level outflow winds.

The buoyancy-sorting framework is used to interpret the influence of environmental humidity on the updraft entrainment process and the observed strong dependence on the environmental CAPE. The reduction in convective vigor caused by dry air is relatively inconsequential at very high CAPE, but low-CAPE convection requires a humid environment in order to grow by entrainment.

The simulated responses of the downdraft and cold pool intensities to dry air aloft reflected the changes in diabatic cooling rates within the downdraft formation regions. When dry air was present, the decline in hydrometeor mass exerted a negative tendency on the diabatic cooling rates and acted to offset the favorable effects of dry air for cooling by evaporation. Thus, with the exception of the rearward portions of the high-CAPE line-type simulations, dry air was unable to strengthen the downdrafts and cold pool.

A review of the literature demonstrates that observational evidence does not unambiguously support the concept that dry air aloft favors downdraft and outflow strength. It is also shown that the use of warm rain microphysics in previous modeling studies may have reinforced the tendency to overemphasize the role of dry air aloft.

Corresponding author address: Richard P. James, Prescient Weather Ltd., 200 Innovation Blvd., Ste. 257, State College, PA 16801. Email: rpj105@earthlink.net

Save