Formation of Charge Structures in a Supercell

Eric C. Bruning Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Eric C. Bruning in
Current site
Google Scholar
PubMed
Close
,
W. David Rust NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by W. David Rust in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
,
Michael I. Biggerstaff School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael I. Biggerstaff in
Current site
Google Scholar
PubMed
Close
, and
Terry J. Schuur Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Terry J. Schuur in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lightning mapping, electric field, and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine the storm’s charge structure. An initial arc-shaped maximum in lightning activity on the right flank of the storm’s bounded weak echo region was composed of an elevated normal polarity tripole in the region of precipitation lofted above the storm’s weak echo region. Later in the storm, two charge structures were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred, with positive charge carried on hail at the bottom of the stack. Farther forward in the storm’s precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack. There were different charge structures in adjacent regions of the storm at the same time, and regions of opposite polarity charge were horizontally adjacent at the same altitude. Flashes occasionally lowered positive charge to ground from the forward charge region. A conceptual model is presented that ties charge structure in different regions of the storm to storm structure inferred from radar reflectivity.

* Current affiliation: University of Maryland, College Park, ESSIC/CICS, College Park, Maryland

Corresponding author address: Eric Bruning, University of Maryland, College Park, ESSIC/CICS, 5825 University Research Court Suite 4001, College Park, MD 20740-2465. Email: eric.bruning@noaa.gov

Abstract

Lightning mapping, electric field, and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine the storm’s charge structure. An initial arc-shaped maximum in lightning activity on the right flank of the storm’s bounded weak echo region was composed of an elevated normal polarity tripole in the region of precipitation lofted above the storm’s weak echo region. Later in the storm, two charge structures were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred, with positive charge carried on hail at the bottom of the stack. Farther forward in the storm’s precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack. There were different charge structures in adjacent regions of the storm at the same time, and regions of opposite polarity charge were horizontally adjacent at the same altitude. Flashes occasionally lowered positive charge to ground from the forward charge region. A conceptual model is presented that ties charge structure in different regions of the storm to storm structure inferred from radar reflectivity.

* Current affiliation: University of Maryland, College Park, ESSIC/CICS, College Park, Maryland

Corresponding author address: Eric Bruning, University of Maryland, College Park, ESSIC/CICS, 5825 University Research Court Suite 4001, College Park, MD 20740-2465. Email: eric.bruning@noaa.gov

Save
  • Baker, B., M. B. Baker, E. R. Jayaratne, J. Latham, and C. P. R. Saunders, 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Meteor. Soc., 113 , 11931215.

    • Search Google Scholar
    • Export Citation
  • Bateman, M. G., T. C. Marshall, M. Stolzenburg, and W. D. Rust, 1999: Precipitation charge and size measurements inside a New Mexico mountain thunderstorm. J. Geophys. Res., 104 , (D8). 96439654.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112 , D05208. doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86 , 12631274.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: The evolution of tornadic storms. J. Atmos. Sci., 22 , 664668.

  • Browning, K. A., and R. J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20 , 533545.

  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102 , 499533.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135 , 25252544.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108 , 4298. doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromag. Compat., 51 (3) 499518.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and H. W. Frank, 1983: Case study of a hailstorm in Colorado. Part III: Airflow from triple-Doppler measurements. J. Atmos. Sci., 40 , 686707.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46 , 31443176.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. V., and E. R. Mansell, 2006: Three-dimensional lightning mapping of the Central Oklahoma supercell on 26 May 2004. Extended Abstracts, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.5.

    • Search Google Scholar
    • Export Citation
  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65 , 18731878.

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071125.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and P. R. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., GE-17 (4) 162171.

    • Search Google Scholar
    • Export Citation
  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137 , 41514170.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., A. A. Few, and T. L. Teer, 1981: Layered lightning activity. J. Geophys. Res., 86 , 99009910.

  • MacGorman, D. R., D. W. Burgess, V. M. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46 , 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40 , 459478.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. R. Krehbiel, W. Rison, E. C. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133 , 25832607.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89 , 9971013.

    • Search Google Scholar
    • Export Citation
  • Maggio, C. R., and Coauthors, 2005: Lightning-initiation locations as a remote sensing tool of large thunderstorm electric field vectors. J. Atmos. Oceanic Technol., 22 , 10591068.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. D. Rust, 1991: Electric field soundings through thunderstorms. J. Geophys. Res., 96 , 2229722306.

  • Marshall, T. C., M. Stolzenburg, C. R. Maggio, L. M. Coleman, P. R. Krehbiel, T. Hamlin, R. J. Thomas, and W. Rison, 2005: Observed electric fields associated with lightning initiation. Geophys. Res. Lett., 32 , L03813. doi:10.1029/2004GL021802.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., 2002: Physical processes during development of lightning flashes. C. R. Phys., 3 (10) 13931409.

  • Mazur, V., and L. H. Ruhnke, 1993: Common physical processes in natural and artificially triggered lightning. J. Geophys. Res., 98 , 1291312930.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., and L. H. Ruhnke, 1998: Model of electric charges in thunderstorms and associated lightning. J. Geophys. Res., 103 , (D18). 2329923308.

    • Search Google Scholar
    • Export Citation
  • Murphy, M., 2006: When flash algorithms go bad. First Int. Lightning Meteorology Conf., Tuscon, AZ, Vaisala, 26–27.

  • Pereyra, R. G., E. E. Avila, N. E. Castellano, and C. Saunders, 2000: A laboratory study of graupel charging. J. Geophys. Res., 105 , 2080320812.

    • Search Google Scholar
    • Export Citation
  • Proctor, D. E., 1983: Lightning and precipitation in a small multicellular thunderstorm. J. Geophys. Res., 88 , 54215440.

  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14 , 426436.

  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study. Atmos. Res., 76 , 247271.

    • Search Google Scholar
    • Export Citation
  • Saba, M. M. F., K. L. Cummins, T. A. Warner, E. P. Krider, L. Z. S. Campos, M. G. Ballarotti, O. Pinto Jr., and S. A. Fleenor, 2008: Positive leader characteristics from high-speed video observations. Geophys. Res. Lett., 35 , L07802. doi:10.1029/2007GL033000.

    • Search Google Scholar
    • Export Citation
  • Sand, W. R., 1976: Observations in hailstorms using the T-28 aircraft system. J. Appl. Meteor., 15 , 641650.

  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132 , 26532673.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101 , (D21). 2664126668.

    • Search Google Scholar
    • Export Citation
  • Simpson, G., and G. D. Robinson, 1941: The distribution of electricity in thunderclouds, II. Proc. Roy. Soc. London, 177A , 281329.

  • Stolzenburg, M., and T. C. Marshall, 1994: Testing models of thunderstorm charge distributions with Coulomb’s law. J. Geophys. Res., 99 , (D12). 2592125932.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions. 2. Isolated storms. J. Geophys. Res., 103 , (D12). 1407914096.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998b: Electrical structure in thunderstorm convective regions. 3. Synthesis. J. Geophys. Res., 103 , (D12). 1409714108.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59 , 10181025.

  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109 , D14207. doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. J. Heckman, H. J. Christian, and Z-I. Kawasaki, 2003: Vertical development of lightning activity observed by the LDAR system: Lightning bubbles. J. Appl. Meteor., 42 , 165174.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., C. B. Moore, R. P. Espinola, and H. H. Blau Jr., 1966: Electric potential gradients above thunderstorms. J. Atmos. Sci., 23 , 764770.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., W. D. Rust, D. R. MacGorman, E. C. Bruning, and P. R. Krehbiel, 2008: Evolving complex electrical structure of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136 , 741756.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., C. M. Cooke, and K. A. Wright, 1985: Electrical discharge propagation in and around space charge clouds. J. Geophys. Res., 90 , 60596070.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94 , 1321313220.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96 , 1283312855.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 546 181 41
PDF Downloads 358 82 9