Sensitivity of Global Ensemble Forecasts to the Initial Ensemble Mean and Perturbations: Comparison of EnKF, Singular Vector, and 4D-Var Approaches

Mark Buehner Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Mark Buehner in
Current site
Google Scholar
PubMed
Close
and
Ahmed Mahidjiba Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Ahmed Mahidjiba in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the sensitivity of global ensemble forecasts to the use of different approaches for specifying both the initial ensemble mean and perturbations. The current operational ensemble prediction system of the Meteorological Service of Canada uses the ensemble Kalman filter (EnKF) to define both the ensemble mean and perturbations. To evaluate the impact of different approaches for obtaining the initial ensemble perturbations, the operational EnKF approach is compared with using either no initial perturbations or perturbations obtained using singular vectors (SVs). The SVs are computed using the (dry) total-energy norm with a 48-h optimization time interval. Random linear combinations of 60 SVs are computed for each of three regions. Next, the impact of replacing the initial ensemble mean, currently the EnKF ensemble mean analysis, with the higher-resolution operational four-dimensional variational data assimilation (4D-Var) analysis is evaluated. For this comparison, perturbations are provided by the EnKF. All experiments are performed over two-month periods during both the boreal summer and winter using a system very similar to the global ensemble prediction system that became operational on 10 July 2007. Relative to the operational configuration that relies on the EnKF, the use of SVs to compute initial perturbations produces small, but statistically significant differences in probabilistic forecast scores in favor of the EnKF both in the tropics and, for a limited set of forecast lead times, in the summer hemisphere extratropics, whereas the results are very similar in the winter hemisphere extratropics. Both approaches lead to significantly better ensemble forecasts than with no initial perturbations, though results are quite similar in the tropics when using SVs and no perturbations. The use of an initial-time norm that does not include information on analysis uncertainty and the lack of linearized moist processes in the calculation of the SVs are two factors that limit the quality of the resulting SV-based ensemble forecasts. Relative to the operational configuration, use of the 4D-Var analysis to specify the initial ensemble mean results in improved probabilistic forecast scores during the boreal summer period in the southern extratropics and tropics, but a near-neutral impact otherwise.

Corresponding author address: Mark Buehner, Meteorological Research Division, Environment Canada, 2121 TransCanada Hwy., Dorval QC H9P 1J3, Canada. Email: mark.buehner@ec.gc.ca

This article included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Abstract

This study examines the sensitivity of global ensemble forecasts to the use of different approaches for specifying both the initial ensemble mean and perturbations. The current operational ensemble prediction system of the Meteorological Service of Canada uses the ensemble Kalman filter (EnKF) to define both the ensemble mean and perturbations. To evaluate the impact of different approaches for obtaining the initial ensemble perturbations, the operational EnKF approach is compared with using either no initial perturbations or perturbations obtained using singular vectors (SVs). The SVs are computed using the (dry) total-energy norm with a 48-h optimization time interval. Random linear combinations of 60 SVs are computed for each of three regions. Next, the impact of replacing the initial ensemble mean, currently the EnKF ensemble mean analysis, with the higher-resolution operational four-dimensional variational data assimilation (4D-Var) analysis is evaluated. For this comparison, perturbations are provided by the EnKF. All experiments are performed over two-month periods during both the boreal summer and winter using a system very similar to the global ensemble prediction system that became operational on 10 July 2007. Relative to the operational configuration that relies on the EnKF, the use of SVs to compute initial perturbations produces small, but statistically significant differences in probabilistic forecast scores in favor of the EnKF both in the tropics and, for a limited set of forecast lead times, in the summer hemisphere extratropics, whereas the results are very similar in the winter hemisphere extratropics. Both approaches lead to significantly better ensemble forecasts than with no initial perturbations, though results are quite similar in the tropics when using SVs and no perturbations. The use of an initial-time norm that does not include information on analysis uncertainty and the lack of linearized moist processes in the calculation of the SVs are two factors that limit the quality of the resulting SV-based ensemble forecasts. Relative to the operational configuration, use of the 4D-Var analysis to specify the initial ensemble mean results in improved probabilistic forecast scores during the boreal summer period in the southern extratropics and tropics, but a near-neutral impact otherwise.

Corresponding author address: Mark Buehner, Meteorological Research Division, Environment Canada, 2121 TransCanada Hwy., Dorval QC H9P 1J3, Canada. Email: mark.buehner@ec.gc.ca

This article included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Save
  • Barkmeijer, J., R. Buizza, and T. N. Palmer, 1999: 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 2333–2351.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127 , 685–708.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., M. Roch, A-M. Leduc, P. A. Vaillancourt, S. Laroche, and J. Mailhot, 2009: Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operational system. Wea. Forecasting, 24 , 690–708.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., 2006: Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus, 58A , 538–548.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and A. Zadra, 2006: Impact of flow-dependent analysis-error covariance norms on extratropical singular vectors. Quart. J. Roy. Meteor. Soc., 132 , 625–646.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138 , 1550–1566.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138 , 1567–1586.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1994: Localization of optimal perturbations using a projection operator. Quart. J. Roy. Meteor. Soc., 120 , 1647–1681.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric general circulation. J. Atmos. Sci., 52 , 1434–1456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133 , 1076–1097.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134 , 2051–2066.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 1719–1724.

    • Search Google Scholar
    • Export Citation
  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135 , 2688–2699.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138 , 1877–1901.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 1373–1395.

    • Search Google Scholar
    • Export Citation
  • Descamps, L., and O. Talagrand, 2007: On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev., 135 , 3260–3272.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., and J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54 , 286–313.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 10143–10162.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau, 2007: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135 , 2339–2354.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev., 128 , 1835–1851.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15 , 559–570.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796–811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131 , 3269–3289.

  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 1225–1242.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., M. Charron, H. L. Mitchell, and G. Pellerin, 2007: Status of the Global EPS at Environment Canada. Proc. ECMWF Workshop on Ensemble Prediction, Reading, United Kingdom, ECMWF, 57–68.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137 , 2126–2143.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., M. Tanguay, and Y. Delage, 2002: Linearization of a simplified planetary boundary layer parameterization. Mon. Wea. Rev., 130 , 2074–2087.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227 , 3515–3539.

  • Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136 , 443–462.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Leutbecher, and E. Källén, 2008: Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF ensemble prediction system. Mon. Wea. Rev., 136 , 4092–4104.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., 137 , 4325–4343.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73–119.

    • Search Google Scholar
    • Export Citation
  • Park, Y-Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134 , 2029–2050.

    • Search Google Scholar
    • Export Citation
  • Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127 , 709–731.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131 , 3079–3102.

    • Search Google Scholar
    • Export Citation
  • Stanski, H. R., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification in meteorology. World Weather Watch Rep. 8, Tech. Doc. 358, World Meteorological Organization, 114 pp.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., and S. Polavarapu, 1999: The adjoint of the semi-Lagrangian treatment of the passive tracer equation. Mon. Wea. Rev., 127 , 551–564.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 2317–2330.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132 , 1590–1605.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A , 62–79.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., M. Buehner, S. Laroche, and J-F. Mahfouf, 2004: Impact of the GEM model simplified physics on extra-tropical singular vectors. Quart. J. Roy. Meteor. Soc., 130 , 2541–2569.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 110 59
PDF Downloads 47 21 0