Composite Structure of Tropopause Polar Cyclones

Steven M. Cavallo University of Washington, Seattle, Washington

Search for other papers by Steven M. Cavallo in
Current site
Google Scholar
PubMed
Close
and
Gregory J. Hakim University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropopause polar vortices are coherent circulation features based on the tropopause in polar regions. They are a common feature of the Arctic, with typical radii less than 1500 km and lifetimes that may exceed 1 month. The Arctic is a particularly favorable region for these features due to isolation from the horizontal wind shear associated with the midlatitude jet stream, which may destroy the vortical circulation. Intensification of cyclonic tropopause polar vortices is examined here using an Ertel potential vorticity framework to test the hypothesis that there is an average tendency for diabatic effects to intensify the vortices due to enhanced upper-tropospheric radiative cooling within the vortices. Data for the analysis are derived from numerical simulations of a large sample of observed cyclonic vortices over the Canadian Arctic. Results show that there is on average a net tendency to create potential vorticity in the vortex, and hence intensify cyclones, and that the tendency is radiatively driven. While the effects of latent heating are considerable, they are smaller in magnitude, and all other diabatic processes have a negligible effect on vortex intensity.

Corresponding author address: Steven Cavallo, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. Email: cavallo@ucar.edu

Abstract

Tropopause polar vortices are coherent circulation features based on the tropopause in polar regions. They are a common feature of the Arctic, with typical radii less than 1500 km and lifetimes that may exceed 1 month. The Arctic is a particularly favorable region for these features due to isolation from the horizontal wind shear associated with the midlatitude jet stream, which may destroy the vortical circulation. Intensification of cyclonic tropopause polar vortices is examined here using an Ertel potential vorticity framework to test the hypothesis that there is an average tendency for diabatic effects to intensify the vortices due to enhanced upper-tropospheric radiative cooling within the vortices. Data for the analysis are derived from numerical simulations of a large sample of observed cyclonic vortices over the Canadian Arctic. Results show that there is on average a net tendency to create potential vorticity in the vortex, and hence intensify cyclones, and that the tendency is radiatively driven. While the effects of latent heating are considerable, they are smaller in magnitude, and all other diabatic processes have a negligible effect on vortex intensity.

Corresponding author address: Steven Cavallo, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. Email: cavallo@ucar.edu

Save
  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. I, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 431 pp.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, J. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124 , 18651891.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137 , 13581371.

  • Cess, R. D., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general-circulation models. Science, 253 (5022) 888892.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling and advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling and advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Rep. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res., 100 , (D8). 1651916535.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35 , L01703. doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120 , 24092428.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96 , 715721.

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5 , 1960.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2000: Climatology of coherent structures on the extratropical tropopause. Mon. Wea. Rev., 128 , 385406.

  • Hakim, G. J., and A. K. Canavan, 2005: Observed cyclone-anticyclone tropopause asymmetries. J. Atmos. Sci., 62 , 231240.

  • Hakim, G. J., D. Keyser, and L. F. Bosart, 1995: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part I: Multiscale case study. Mon. Wea. Rev., 123 , 26632692.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., D. Keyser, and L. F. Bosart, 1996: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 124 , 21762205.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107 , 8039. doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130 , 5974.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126 , 25552579.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1998: Geophysical Fluid Dynamics. 2nd ed. Springer, 728 pp.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. 2nd ed. Springer, 520 pp.

  • Randel, W. J., F. Wu, and P. Forster, 2007: The extratropical inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007: The large-scale energy budget of the Arctic. J. Geophys. Res., 112 , D11122. doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. Tech. Rep., NCAR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849874.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The President’s Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113 , 962988.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22 , 23162334.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96 , 6790.

    • Search Google Scholar
    • Export Citation
  • Zierl, B., and V. Wirth, 1997: The influence of radiation on tropopause behaviour and stratosphere-troposphere exchange in an upper tropospheric anticyclone. J. Geophys. Res., 102 , 2388323894.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 338 23
PDF Downloads 516 181 17