Dynamical Core of an Atmospheric General Circulation Model on a Yin–Yang Grid

Yuya Baba Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Search for other papers by Yuya Baba in
Current site
Google Scholar
PubMed
Close
,
Keiko Takahashi Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Search for other papers by Keiko Takahashi in
Current site
Google Scholar
PubMed
Close
,
Takeshi Sugimura Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Search for other papers by Takeshi Sugimura in
Current site
Google Scholar
PubMed
Close
, and
Koji Goto Scientific Software Department, HPC Marketing Promotion Division, NEC Corporation, Fuchu, Tokyo, Japan

Search for other papers by Koji Goto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The three-dimensional dynamical core of an atmospheric general circulation model employing Yin–Yang grid is developed and examined. Benchmark test cases based on the shallow-water model configuration are first performed to examine the validity of two-dimensional calculations. The experiments show that the model simulates reasonable flow fields with second-order accuracy. The model validation is then extended to three-dimensional features where the capability of the dynamical core on the Yin–Yang grid has not been tested before: the global mountain gravity wave, long-term integration, and life cycle experiments. The simulated flow fields are in good agreement with the results of original experiments in all three experiments. The sensitivity of the model flow field to the overset region is also tested. The experiments reveal that the presence of the overset region does not significantly affect the dynamics on both long and short time scales, if the number of overset grids is fixed to three and the high-order interpolation method is applied for data interpolation between the Yin–Yang grids.

Corresponding author address: Yuya Baba, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: babay@jamstec.go.jp

Abstract

The three-dimensional dynamical core of an atmospheric general circulation model employing Yin–Yang grid is developed and examined. Benchmark test cases based on the shallow-water model configuration are first performed to examine the validity of two-dimensional calculations. The experiments show that the model simulates reasonable flow fields with second-order accuracy. The model validation is then extended to three-dimensional features where the capability of the dynamical core on the Yin–Yang grid has not been tested before: the global mountain gravity wave, long-term integration, and life cycle experiments. The simulated flow fields are in good agreement with the results of original experiments in all three experiments. The sensitivity of the model flow field to the overset region is also tested. The experiments reveal that the presence of the overset region does not significantly affect the dynamics on both long and short time scales, if the number of overset grids is fixed to three and the high-order interpolation method is applied for data interpolation between the Yin–Yang grids.

Corresponding author address: Yuya Baba, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: babay@jamstec.go.jp

Save
  • Adcroft, A., J-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the spherical cube. Mon. Wea. Rev., 132 , 28452863.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput. Phys., 17 , 173265.

    • Search Google Scholar
    • Export Citation
  • Barros, S. R. M., and C. I. Carcia, 2007: A global finite-difference semi-Lagrange model for the adiabatic primitive equations. J. Comput. Phys., 226 , 16451667.

    • Search Google Scholar
    • Export Citation
  • Browning, G. L., J. J. Hack, and P. N. Swarztrauber, 1989: A comparison of three numerical methods for solving differential equations on the sphere. Mon. Wea. Rev., 117 , 10581075.

    • Search Google Scholar
    • Export Citation
  • Burton, T. M., and J. Eaton, 2002: Analysis of a fractional-step method on overset grids. J. Comput. Phys., 177 , 336364.

  • Dudhia, J., and J. F. Bresch, 2002: A global version of the PSU–NCAR mesoscale model. Mon. Wea. Rev., 130 , 29893007.

  • Epifanio, C. C., and T. Qian, 2008: Wave-turbulence interactions in breaking mountain wave. J. Atmos. Sci., 65 , 31393158.

  • Fox-Rabinovitz, M. S., G. L. Stenchikov, M. J. Suarez, and L. L. Takas, 1997: A finite-difference GCM dynamical core with a variable-resolution stretched grid. Mon. Wea. Rev., 125 , 29432968.

    • Search Google Scholar
    • Export Citation
  • Heikes, R. H., and D. A. Randall, 1995: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123 , 18621880.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Iga, S., H. Tomita, M. Satoh, and K. Goto, 2007: Mountain-wave-like spurious waves associated with simulated cold fronts due to inconsistencies between horizontal and vertical resolutions. Mon. Wea. Rev., 135 , 26292641.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132 , 29432975.

    • Search Google Scholar
    • Export Citation
  • Kageyama, A., and T. Sato, 2004: The “Yin-Yang grid”: An overset grid in spherical geometry. Geochem. Geophys. Geosyst., 5 , Q09005. doi:10/1029/2004GC000734.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

  • Klinger, B. A., C. Cruz, and P. Schopf, 2006: Targeted Shapiro filter in an ocean model. Ocean Modell., 13 , 148155.

  • Lanser, D., J. G. Blom, and J. G. Verwer, 2000: Spatial discretization of the shallow water equations in spherical geometry using Osher’s scheme. J. Comput. Phys., 165 , 542565.

    • Search Google Scholar
    • Export Citation
  • Layton, A. T., 2002: Cubic spline collocation method for the shallow water equations on the sphere. J. Comput. Phys., 179 , 578592.

  • Li, X., D. Chen, X. Peng, F. Xiao, and X. Chen, 2006: Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere. Adv. Atmos. Sci., 23 , 792801.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. Chen, X. Peng, K. Takahashi, and F. Xiao, 2008: A multimoment finite-volume shallow-water model on Yin–Yang overset spherical grid. Mon. Wea. Rev., 136 , 30663086.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., and Coauthors, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130 , 319338.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev., 124 , 13111322.

  • Peng, X., F. Xiao, and K. Takahashi, 2006: Conservative constraint for a quasi-uniform overset grid on sphere. Quart. J. Roy. Meteor. Soc., 132 , 979996.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., R. K. Scott, and S. J. Thomas, 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev., 132 , 25392552.

    • Search Google Scholar
    • Export Citation
  • Qian, J-H., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-Lagrange atmospheric model with orography. Mon. Wea. Rev., 126 , 747771.

    • Search Google Scholar
    • Export Citation
  • Rancic, M., R. J. Purser, and F. Mesinger, 1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122 , 959982.

    • Search Google Scholar
    • Export Citation
  • Ronchi, C., R. Iacono, and P. S. Paolucci, 1996: The “Cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124 , 93114.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130 , 12271245.

    • Search Google Scholar
    • Export Citation
  • Schroeder, G., K. H. Schlunzen, and F. Schimmel, 2006: Use of (weighted) essentially non-oscillatory advection schemes. Quart. J. Roy. Meteor. Soc., 132 , 15091526.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1971: The use of linear filtering as a parameterization of atmospheric diffusion. J. Atmos. Sci., 28 , 523531.

  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120 , 21092127.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227 , 34653485.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Sugimura, T., K. Takahashi, and H. Sakagami, 2006: Characteristics of numerical error on overset grid (in Japanese). Nagare, 25 , 247256.

    • Search Google Scholar
    • Export Citation
  • Tolstykh, M. A., 2002: Vorticity-divergence semi-Lagrangian shallow-water model of the sphere based on compact finite differences. J. Comput. Phys., 179 , 180200.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34 , 357400.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and P. K. Smolarkiewicz, 2009: A framework for testing global non-hydrostatic models. Quart. J. Roy. Meteor. Soc., 135 , 469484.

    • Search Google Scholar
    • Export Citation
  • White, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth, 2005: Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart. J. Roy. Meteor. Soc., 131 , 20812107.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B , 241269.

  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102 , 211224.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 109 8
PDF Downloads 313 89 18