Rapid Intensification of a Sheared Tropical Storm

John Molinari Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by John Molinari in
Current site
Google Scholar
PubMed
Close
and
David Vollaro Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by David Vollaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A weak tropical storm (Gabrielle in 2001) experienced a 22-hPa pressure fall in less than 3 h in the presence of 13 m s−1 ambient vertical wind shear. A convective cell developed downshear left of the center and moved cyclonically and inward to the 17-km radius during the period of rapid intensification. This cell had one of the most intense 85-GHz scattering signatures ever observed by the Tropical Rainfall Measuring Mission (TRMM). The cell developed at the downwind end of a band in the storm core. Maximum vorticity in the cell exceeded 2.5 × 10−2 s−1. The cell structure broadly resembled that of a vortical hot tower rather than a supercell.

At the time of minimum central pressure, the storm consisted of a strong vortex adjacent to the cell with a radius of maximum winds of about 10 km that exhibited almost no tilt in the vertical. This was surrounded by a broader vortex that tilted approximately left of the ambient shear vector, in a similar direction as the broad precipitation shield. This structure is consistent with the recent results of Riemer et al.

The rapid deepening of the storm is attributed to the cell growth within a region of high efficiency of latent heating following the theories of Nolan and Vigh and Schubert. This view is supported by a rapid growth of wind speed and vorticity in the storm core during the 1-h lifetime of the cell, and by the creation of a narrow 7°C spike in 700-hPa temperature adjacent to the cell and coincident with the lowest pressure. The cell is not seen as the cause of rapid intensification. Rather, it is part of a multiscale process: (i) development of a new circulation center within the downshear precipitation shield, (ii) continued ambient shear creating a favored region for cell formation just downshear of the new center, and (iii) the development of the intense cell that enhanced diabatic heating close to the center in a region of high efficiency of kinetic energy production. This sheared, asymmetric rapid intensification of Tropical Storm Gabrielle is contrasted with the nearly symmetric composite given by Kaplan and DeMaria.

Corresponding author address: John Molinari, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES-225, 1400 Washington Ave., Albany, NY 12222. Email: molinari@atmos.albany.edu

Abstract

A weak tropical storm (Gabrielle in 2001) experienced a 22-hPa pressure fall in less than 3 h in the presence of 13 m s−1 ambient vertical wind shear. A convective cell developed downshear left of the center and moved cyclonically and inward to the 17-km radius during the period of rapid intensification. This cell had one of the most intense 85-GHz scattering signatures ever observed by the Tropical Rainfall Measuring Mission (TRMM). The cell developed at the downwind end of a band in the storm core. Maximum vorticity in the cell exceeded 2.5 × 10−2 s−1. The cell structure broadly resembled that of a vortical hot tower rather than a supercell.

At the time of minimum central pressure, the storm consisted of a strong vortex adjacent to the cell with a radius of maximum winds of about 10 km that exhibited almost no tilt in the vertical. This was surrounded by a broader vortex that tilted approximately left of the ambient shear vector, in a similar direction as the broad precipitation shield. This structure is consistent with the recent results of Riemer et al.

The rapid deepening of the storm is attributed to the cell growth within a region of high efficiency of latent heating following the theories of Nolan and Vigh and Schubert. This view is supported by a rapid growth of wind speed and vorticity in the storm core during the 1-h lifetime of the cell, and by the creation of a narrow 7°C spike in 700-hPa temperature adjacent to the cell and coincident with the lowest pressure. The cell is not seen as the cause of rapid intensification. Rather, it is part of a multiscale process: (i) development of a new circulation center within the downshear precipitation shield, (ii) continued ambient shear creating a favored region for cell formation just downshear of the new center, and (iii) the development of the intense cell that enhanced diabatic heating close to the center in a region of high efficiency of kinetic energy production. This sheared, asymmetric rapid intensification of Tropical Storm Gabrielle is contrasted with the nearly symmetric composite given by Kaplan and DeMaria.

Corresponding author address: John Molinari, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES-225, 1400 Washington Ave., Albany, NY 12222. Email: molinari@atmos.albany.edu

Save
  • Baker, A. K., M. D. Parker, and M. D. Eastin, 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24 , 223244.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37 , L06802. doi:10.1029/2009GL042313.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003-2004. J. Geophys. Res., 112 , D05208. doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., D. R. Clabo, and J. W. Zeitler, 2009: Comments on “Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan”. Mon. Wea. Rev., 137 , 27032712.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 769784.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134 , 31903208.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74 , 16691687.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, technique, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51 , 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., J. A. Cramer, C. J. Biagi, E. P. Krider, J. Jeraud, M. A. Uman, and V. A. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kanaskis, Alberta, Canada, Amer. Meteor. Soc., 588–592.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137 , 20812104.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130 , 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133 , 209227.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. D. Reasor, D. S. Nolan, F. D. Marks Jr., and J. F. Gamache, 2006: Evolution of low-wavenumber vorticity during rapid intensification: A dual-Doppler analysis. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 4B.6.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129 , 25702584.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and W. Korotky, 1991: The SHARP workstation v1.50 users guide. NOAA/National Weather Service, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716].

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. Halverson, E. Ritchie, J. Simpson, J. Molinari, and L. Yian, 2006: Structure of the highly sheared Tropical Storm Chantal during CAMEX-4. J. Atmos. Sci., 63 , 268287.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., W-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137 , 27782800.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18 , 10931108.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25 , 220241.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31 , L24112. doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kim, D-K., K. R. Knupp, and C. R. Williams, 2009: Airflow and precipitation properties within the stratiform region of Tropical Storm Gabrielle during landfall. Mon. Wea. Rev., 137 , 19541971.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74 , 12931311.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63 , 234251.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interactions, 6 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornado genesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., 1991: Buoyancy and shear characteristics of hurricane tornado environments. Mon. Wea. Rev., 119 , 19541978.

  • McCaul Jr., E. W., D. E. Buechler, S. J. Goodman, and M. Cammarata, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124 , 24172437.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46 , 10931105.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2008: Extreme helicity and intense convective towers in Hurricane Bonnie. Mon. Wea. Rev., 136 , 43554372.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67 , 274284.

  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61 , 24932509.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63 , 341354.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., C. A. Davis, and M. T. Montgomery, 2008: Numerical simulations of the formation of Hurricane Gabrielle (2001). Mon. Wea. Rev., 136 , 31513167.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2006: Federal meteorological handbook No. 11: Doppler radar meteorological observations. Part C. WSR-88D products and algorithms. Office of Federal Coordinator for Meteorology, FCM-H11C-2006, 390 pp.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56 , 241266.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64 , 33773405.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and C. A. Doswell, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20 , 954970.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58 , 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62 , 31513171.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137 , 603631.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamics impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10 , 31633188.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67 , 4470.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67 , 468484.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., D. R. MacGorman, and F. H. Carr, 2000: Cloud-to-ground lightning throughout the lifetime of a severe storm system in Oklahoma. Mon. Wea. Rev., 128 , 17981816.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Sharp, D. W., S. M. Spratt, P. F. Blottman, and D. S. Kelly, 2002: Using high-resolution diagnostics to facilitate the short-term threat assessment of tornadoes during Tropical Storm Gabrielle (2001). Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 15.3.

    • Search Google Scholar
    • Export Citation
  • Shelton, K., and J. Molinari, 2009: Life of a 6-hour hurricane. Mon. Wea. Rev., 137 , 5167.

  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134 , 17961814.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137 , 645663.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. V. Sang, 2009: Tropical cyclone spinup revisited. Quart. J. Roy. Meteor. Soc., 135 , 13211335.

  • Stewart, S. R., and S. W. Lyons, 1996: A WSR-88D radar view of Tropical Cyclone Ed. Wea. Forecasting, 11 , 115135.

  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66 , 33353350.

  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57 , 14521472.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106 , 789805.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 861 324 36
PDF Downloads 610 186 31