• Ballard, S., , B. Golding, , and R. Smith, 1991: Mesoscale model experimental forecasts of the Haar of northeast Scotland. Mon. Wea. Rev., 119 , 21072123.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10 , 11721193.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., , and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122 , 12181230.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., , D. Carrer, , J. Noilhan, , and P. Bougeault, 2005: Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Wea. Forecasting, 20 , 627646.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., , E. Terradellas, , J. Cuxart, , A. Mira, , O. Liechti, , M. Mueller, , and N. W. Nielsen, 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46 , 504521.

    • Search Google Scholar
    • Export Citation
  • Bott, A., , and T. Trautmann, 2002: PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res., 64 , (1–4). 191203.

    • Search Google Scholar
    • Export Citation
  • Bott, A., , U. Sievers, , and W. Zdunkowski, 1990: A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J. Atmos. Sci., 47 , 21532166.

    • Search Google Scholar
    • Export Citation
  • Brown, R., , and W. T. Roach, 1976: The physics of radiation fog: II—A numerical study. Quart. J. Roy. Meteor. Soc., 102 , 335354.

  • Cerni, T. A., , and T. R. Parish, 1984: A radiative model of the stable nocturnal boundary layer with application to the polar night. J. Climate Appl. Meteor., 23 , 15631572.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., , and W. P. Hopwood, 2001a: One-dimensional site-specific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies. Meteor. Appl., 8 , 279286.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., , and W. P. Hopwood, 2001b: One-dimensional site-specific forecasting of radiation fog. Part II: Impact of site observations. Meteor. Appl., 8 , 287296.

    • Search Google Scholar
    • Export Citation
  • Croft, P. J., 2003: Fog. Encyclopedia of Atmospheric Sciences. J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Vol. 2, Academic Press, 777–792.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., , P. Bougeault, , and J-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multilevel, prediction models. Quart. J. Roy. Meteor. Soc., 102 , 405418.

  • Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119 , 324341.

  • Ek, M. B., , K. E. Mitchell, , Y. Lin, , E. Rogers, , P. Grunmann, , V. Koren, , G. Gayno, , and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fisak, J., , D. Rezacova, , and J. Mattanen, 2006: Calculated and measured values of liquid water content in clean and polluted environments. Stud. Geophys. Geod., 50 , 121130.

    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., , and P. Caplan, 1963: An experiment in numerical prediction of fog and stratus. J. Atmos. Sci., 20 , 425437.

  • Fu, G., , J. Guo, , S-P. Xie, , Y. Duan, , and M. Zhang, 2006: Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos. Res., 81 (4) 293303.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garratt, J. R., , and B. B. Hicks, 1973: Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Quart. J. Roy. Meteor. Soc., 99 , 680687.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., , and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38 , 27302746.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., , D. B. Parsons, , J. Dudhia, , and J. Bresh, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev., 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164 , 11211159.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , E. I. F. De Bruijn, , and H-L. Pan, 1990: A high resolution airmass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118 , 15611575.

    • Search Google Scholar
    • Export Citation
  • Hong, S., , J. Dudhia, , and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., , B. G. Heusinkveld, , R. J. Wichink Kruit, , and S. M. Berkowicz, 2006: Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resour. Res., 42 , W03415. doi:10.1029/2005WR004055.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437, National Centers for Environmental Prediction, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterisation for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kunkel, B. A., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Climate Appl. Meteor., 23 , 3441.

    • Search Google Scholar
    • Export Citation
  • Liang, A., , Q. Zhang, , K. Liu, , and H. Shen, 2008: The 3d-var data assimilation experiments on a dense fog event over the central plain of China. Acta Meteor. Sin., 23 , 116127.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , R. D. Rarley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Musson-Genon, L., 1987: Numerical simulations of a fog event with a one-dimensional boundary layer model. Mon. Wea. Rev., 115 , 592607.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119 (2) 397407.

    • Search Google Scholar
    • Export Citation
  • Niemala, S., , P. Raisanen, , and H. Savijärvi, 2001: Comparison of surface radiative flux parameterizations. Part I: Longwave radiation. Atmos. Res., 58 , 118.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , W. G. Cheon, , and S. Y. Hong, 2003: Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and J. F. Mahfouf, 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145149.

  • Pagowski, M., , I. Gultepe, , and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor., 43 , 316.

    • Search Google Scholar
    • Export Citation
  • Pointin, Y., 1984: Wet equivalent potential temperature and enthalpy as prognostic variables in cloud modeling. J. Atmos. Sci., 41 , 651660.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., , and J. E. Kristjànsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 1990: Fast radiation parameterization schemes for mesoscale and short-range forecast models. J. Appl. Meteor., 29 , 437447.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, National Center for Atmospheric Research, 113 pp.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., , B. J. H. Van de Wiel, , and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63 , 920935.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., , T. Mauritsen, , E. I. F. De Bruijn, , J. Vila-Guerau De Arellano, , G. Svensson, , and A. A. M. Holtslag, 2008: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47 , 869887.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164 , 12211240.

    • Search Google Scholar
    • Export Citation
  • Terradellas, E., , and T. Bergot, 2007: Comparison between two single-column models designed for short-term fog and low-clouds forecasting. Física Tierra, 19 , 189203.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: Hirlam-5 scientific documentation. Tech. Rep., Swedish Meteorological and Hydrological Institute, 144 pp.

    • Search Google Scholar
    • Export Citation
  • Vehil, R., , J. Monerris, , D. Guedalia, , and P. Sarthou, 1989: Study of the radiative effects (long-wave and short-wave) within a fog layer. Atmos. Res., 23 , 179194.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., , A. C. M. Beljaars, , J. F. Mahfouf, , and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125 , 24012426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 163 22
PDF Downloads 141 141 12

Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

View More View Less
  • 1 Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands
  • 2 KNMI, Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • 3 Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high-resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High-Resolution Limited-Area Model (HIRLAM) are evaluated against detailed observations to determine the state-of-the-art in fog forecasting and to derive requirements for further research and development. For this particular difficult case, WRF is unable to correctly simulate the fog for any of the parameterizations and model configurations utilized. Contrary, HIRLAM does model the onset of fog, but is unable to represent it beyond the lowest model layer, which leads to an early dispersal of fog in the morning transition. The sensitivity of fog forecasts to model formulation is further analyzed with a high-resolution single-column version of HIRLAM, and with the Duynkerke single-column model as a reference. The single-column results are found to be sensitive to the proper specification of the external forcings. It is reconfirmed that high vertical resolution is essential for modeling the fog formation, the growth of the fog layer, and when the fog lifts for the maintenance of a stratus deck. The properly configured column models are able to accurately model the onset of fog and its maturation, but fail in the simulation of fog persistence and subsequent dispersal. Details of the turbulence parameterization appear to be important in this process. It is concluded that, despite all of the advances in numerical weather prediction, fog forecasting is still a major challenge.

Corresponding author address: Ivar van der Velde, Meteorology and Air Quality Section, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. Email: ivar.vandervelde@wur.nl

Abstract

A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high-resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High-Resolution Limited-Area Model (HIRLAM) are evaluated against detailed observations to determine the state-of-the-art in fog forecasting and to derive requirements for further research and development. For this particular difficult case, WRF is unable to correctly simulate the fog for any of the parameterizations and model configurations utilized. Contrary, HIRLAM does model the onset of fog, but is unable to represent it beyond the lowest model layer, which leads to an early dispersal of fog in the morning transition. The sensitivity of fog forecasts to model formulation is further analyzed with a high-resolution single-column version of HIRLAM, and with the Duynkerke single-column model as a reference. The single-column results are found to be sensitive to the proper specification of the external forcings. It is reconfirmed that high vertical resolution is essential for modeling the fog formation, the growth of the fog layer, and when the fog lifts for the maintenance of a stratus deck. The properly configured column models are able to accurately model the onset of fog and its maturation, but fail in the simulation of fog persistence and subsequent dispersal. Details of the turbulence parameterization appear to be important in this process. It is concluded that, despite all of the advances in numerical weather prediction, fog forecasting is still a major challenge.

Corresponding author address: Ivar van der Velde, Meteorology and Air Quality Section, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. Email: ivar.vandervelde@wur.nl

Save