• Barthazy, E., , S. Goke, , R. Schefold, , and D. Hogl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21 , 14001416.

    • Search Google Scholar
    • Export Citation
  • Bernardet, L., and Coauthors, 2008: The Developmental Testbed Center and its winter forecasting experiment. Bull. Amer. Meteor. Soc., 89 , 611627.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Ek, M., , M. E. Mitchell, , Y. Lin, , E. Rogers, , P. Grunmann, , V. Koren, , G. Gayno, , and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 , 544560.

  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131 , 19972017.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , D00A09. doi:10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1973: Laboratory and field observations of the growth of columnar and plate crystals and frozen droplets. J. Atmos. Sci., 30 , 16501656.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60 , 25732591.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , P. Field, , S. Durden, , J. Stith, , J. Dye, , W. Hall, , and T. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , C. Schmitt, , C. Twohy, , and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , Z. Wang, , and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44 , 13911412.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , P. Field, , and A. Bansemer, 2008: Exponential size distributions for snow. J. Atmos. Sci., 65 , 40174031.

  • Hong, S-Y., , J. Dudhia, , and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. J., , P. V. Hobbs, , P. H. Herzegh, , and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36 , 156162.

    • Search Google Scholar
    • Export Citation
  • Huang, G-J., , V. N. Bringi, , R. Cifelli, , D. Hudak, , and W. A. Petersen, 2010: A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27 , 637651.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., , H. Barker, , P. Rodriguez, , and D. Donovan, 2006: Winter precipitation studies with a dual polarized C-band radar. Preprints, European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, 1–6.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., , P. Rodriguez, , and N. Donaldson, 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C-band radar network. J. Geophys. Res., 113 , D00A07. doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 Scheme in the NCEP Meso model. NCEP Office Note 437, National Centers for Environmental Prediction, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271285.

  • Kain, J. S., , M. E. Baldwin, , P. R. Janish, , S. J. Weiss, , M. P. Kay, , and G. W. Carbin, 2003: Subjective verification of numerical models as a component of a broader interaction between research and operations. Wea. Forecasting, 18 , 847860.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Amer. Meteor. Soc., 84 pp.

  • Korolev, A., , and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63 , 28652880.

  • Lang, S., , W-K. Tao, , R. Cifelli, , W. Olson, , J. Halverson, , S. Rutledge, , and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64 , 11411164.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61 , 24412456.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008a: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89 , 15631570.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008b: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113 , D00A09. doi:10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., , and R. E. J. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Matsui, T., , X. Zeng, , W-K. Tao, , H. Masunaga, , W. S. Olson, , and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26 , 12611274.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Morrison, G., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137 , 9911007.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2007: NASA GPM/PMM participation in the Canadian CloudSat/CALIPSO validation project C3VP. Physical process studies in snow. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 1–7.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Rutledge, S. A., , and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VII: A model for the seeder-feeder process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude clouds. Part XII: A diagnostic modeling study of precipitation development in narrow cold frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Ryan, B., 2000: A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. Atmos. Sci., 57 , 14361451.

    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49 , 22462266.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Tao, W-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136 , 50955115.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , A. J. Schanot, , and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 7
PDF Downloads 29 29 12

Evaluating the Snow Crystal Size Distribution and Density Assumptions within a Single-Moment Microphysics Scheme

View More View Less
  • 1 NASA Marshall Space Flight Center, Huntsville, Alabama
  • 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 3 Environment Canada, King City, Ontario, Canada
© Get Permissions
Restricted access

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was a field campaign designed to obtain aircraft, surface, and radar observations of clouds and precipitation in support of improving the simulation of snowfall and cold season precipitation, their microphysical processes represented within forecast models, and radiative properties relevant to remotely sensed retrievals. During the campaign, a midlatitude cyclone tracked along the U.S.–Canadian border on 22 January 2007, producing an extensive area of snowfall. Observations of ice crystals from this event are used to evaluate the assumptions and physical relationships for the snow category within the Goddard six-class, single-moment microphysics scheme, as implemented within the Weather Research and Forecasting (WRF) model.

The WRF model forecast generally reproduced the precipitation and cloud structures sampled by radars and aircraft, permitting a comparison between C3VP observations and model snowfall characteristics. Key snowfall assumptions in the Goddard scheme are an exponential size distribution with fixed intercept and effective bulk density, and the relationship between crystal diameter and terminal velocity. Fixed values for the size distribution intercept and density did not represent the vertical variability of naturally occurring populations of aggregates, and the current diameter and fall speed relationship underestimated terminal velocities for all sizes of crystals.

Corresponding author address: Andrew L. Molthan, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35805. Email: andrew.molthan@nasa.gov

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was a field campaign designed to obtain aircraft, surface, and radar observations of clouds and precipitation in support of improving the simulation of snowfall and cold season precipitation, their microphysical processes represented within forecast models, and radiative properties relevant to remotely sensed retrievals. During the campaign, a midlatitude cyclone tracked along the U.S.–Canadian border on 22 January 2007, producing an extensive area of snowfall. Observations of ice crystals from this event are used to evaluate the assumptions and physical relationships for the snow category within the Goddard six-class, single-moment microphysics scheme, as implemented within the Weather Research and Forecasting (WRF) model.

The WRF model forecast generally reproduced the precipitation and cloud structures sampled by radars and aircraft, permitting a comparison between C3VP observations and model snowfall characteristics. Key snowfall assumptions in the Goddard scheme are an exponential size distribution with fixed intercept and effective bulk density, and the relationship between crystal diameter and terminal velocity. Fixed values for the size distribution intercept and density did not represent the vertical variability of naturally occurring populations of aggregates, and the current diameter and fall speed relationship underestimated terminal velocities for all sizes of crystals.

Corresponding author address: Andrew L. Molthan, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35805. Email: andrew.molthan@nasa.gov

Save