Initial Maintenance of Tropical Cyclone Size in the Western North Pacific

Cheng-Shang Lee Department of Atmospheric Sciences, National Taiwan University, and Typhoon and Flood Research Institute, National Applied Research Laboratories, Taipei, Taiwan

Search for other papers by Cheng-Shang Lee in
Current site
Google Scholar
PubMed
Close
,
Kevin K. W. Cheung Climate Futures Research Centre, and Department of Environment and Geography, Macquarie University, Sydney, Australia

Search for other papers by Kevin K. W. Cheung in
Current site
Google Scholar
PubMed
Close
,
Wei-Ting Fang Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Wei-Ting Fang in
Current site
Google Scholar
PubMed
Close
, and
Russell L. Elsberry Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Russell L. Elsberry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A tropical cyclone (TC) size parameter, which is defined here as the radius of 15 m s−1 near-surface wind speed (R15), is calculated for 145 TCs in the western North Pacific during 2000–05 based on QuikSCAT oceanic winds. For the 73 TCs that intensified to typhoon intensity during their lifetimes, the 33% and 67% respective percentiles of R15 at tropical storm intensity and at typhoon intensity are used to categorize small, medium, and large TCs. Whereas many of the small TCs form from an easterly wave synoptic pattern, the monsoon-related formation patterns are favorable for forming medium to large TCs. Most of these 73 TCs stay in the same size category during intensification, which implies specific physical mechanisms for maintaining TC size in the basin. The 18 persistently large TCs from the tropical storm to the typhoon stage mostly have northwestward or north-northwestward tracks, while the 16 persistently small TCs either move westward–northwestward in lower latitudes or develop at higher latitudes with various track types. For the large TCs, strong low-level southwesterly winds exist in the outer core region south of the TC center throughout the intensification period. The small TCs are more influenced by the subtropical high during intensification. The conclusion is that it is the low-level environment that determines the difference between large and small size storms during the early intensification period in the western North Pacific.

Corresponding author address: Kevin K. W. Cheung, Department of Environment and Geography, Macquarie University, Sydney, NSW 2109, Australia. Email: kcheung@els.mq.edu.au

Abstract

A tropical cyclone (TC) size parameter, which is defined here as the radius of 15 m s−1 near-surface wind speed (R15), is calculated for 145 TCs in the western North Pacific during 2000–05 based on QuikSCAT oceanic winds. For the 73 TCs that intensified to typhoon intensity during their lifetimes, the 33% and 67% respective percentiles of R15 at tropical storm intensity and at typhoon intensity are used to categorize small, medium, and large TCs. Whereas many of the small TCs form from an easterly wave synoptic pattern, the monsoon-related formation patterns are favorable for forming medium to large TCs. Most of these 73 TCs stay in the same size category during intensification, which implies specific physical mechanisms for maintaining TC size in the basin. The 18 persistently large TCs from the tropical storm to the typhoon stage mostly have northwestward or north-northwestward tracks, while the 16 persistently small TCs either move westward–northwestward in lower latitudes or develop at higher latitudes with various track types. For the large TCs, strong low-level southwesterly winds exist in the outer core region south of the TC center throughout the intensification period. The small TCs are more influenced by the subtropical high during intensification. The conclusion is that it is the low-level environment that determines the difference between large and small size storms during the early intensification period in the western North Pacific.

Corresponding author address: Kevin K. W. Cheung, Department of Environment and Geography, Macquarie University, Sydney, NSW 2109, Australia. Email: kcheung@els.mq.edu.au

Save
  • Bessho, K., M. DeMaria, and J. A. Knaff, 2006: Tropical cyclone wind retrievals from the Advanced Microwave Sounding Unit: Application to surface wind analysis. J. Appl. Meteor. Climatol., 45 , 399415.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1972: Very large and very small typhoons of the western North Pacific Ocean. J. Meteor. Soc. Japan, 50 , 332341.

  • Carr III, L. E., and R. L. Elsberry, 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125 , 31903209.

    • Search Google Scholar
    • Export Citation
  • Carr III, L. E., R. L. Elsberry, and J. E. Peak, 2001: Beta test of the systematic approach expert system prototype as a tropical cyclone track forecasting aid. Wea. Forecasting, 16 , 355368.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and C. K. M. Yip, 2003: Interannual variations of tropical cyclone size over the western North Pacific. Geophys. Res. Lett., 30 , 2267. doi:10.1029/2003GL018522.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17 , 466484.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and W. M. Gray, 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130 , 19892005.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43 , 282296.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45 , 15731581.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Stenger, 2008: Advances in understanding of tropical cyclone wind structure changes. Asia-Pac. J. Atmos. Sci., 44 , 1124.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46 , 975990.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and W. M. Gray, 1980: Radius and frequency of 15 m s−1 (30 kt) winds around tropical cyclones. J. Appl. Meteor., 19 , 219223.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., S. M. Leidner, J. M. Henderson, R. Atlas, J. V. Ardizzone, and S. C. Bloom, 2003: A two-dimensional variational analysis method for NSCAT ambiguity removal: Methodology, sensitivity, and tuning. J. Atmos. Oceanic Technol., 20 , 585605.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40 , 328342.

  • Hsu, K., 2008: An analysis of tropical cyclone formation associated with the upper-level cold-core low (in Chinese; English abstract available.). M.S. thesis, Dept. of Atmospheric Sciences, National Taiwan University, 90 pp.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17 , 35553575.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22 , 781791.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., T. A. Cram, A. B. Schumacher, J. P. Kossin, and M. DeMaria, 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23 , 1728.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137 , 876892.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., C-P. Chang, Y-T. Yang, and H-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137 , 37583770.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., A. Zhao, C-S. Liou, K. Cheung, R. Edson, and J. Franklin, 2006: Operational techniques in defining TC structure. Proc. Sixth WMO Int. Workshop on Tropical Cyclones, San José, Costa Rica, WMO, 1.4, 151–159. [Available online at http://severe.worldweather.org/iwtc/].

    • Search Google Scholar
    • Export Citation
  • Lee, C-S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136 , 20062022.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127 , 29923001.

  • Liu, K. S., and J. C. L. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130 , 21342142.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136 , 48824898.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21 , 9901005.

    • Search Google Scholar
    • Export Citation
  • Pickett, M. H., W. Tang, L. K. Rosenfeld, and C. H. Wash, 2003: QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. West Coast. J. Atmos. Oceanic Technol., 20 , 18691879.

    • Search Google Scholar
    • Export Citation
  • Polito, P. S., W. T. Liu, and W. Q. Tang, 2000: Correlation-based interpolation of NSCAT wind data. J. Atmos. Oceanic Technol., 17 , 11281138.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88 , 513526.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HDR real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78 , 5364.

    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., B. Chapron, T. Elfouhaily, K. Katsaros, and J. Tournadre, 1998: Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res., 103 , 77677786.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127 , 20272043.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104 , 12661278.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116 , 10321043.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19 , 738746.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., J. Clos, and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. Wang, Q. Wan, and C. Liu, 2007: A 28-year climatological analysis of size parameters for northwestern Pacific tropical cyclones. Adv. Atmos. Sci., 24 , 2434.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1212 295 56
PDF Downloads 595 133 35