Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation

Marc Bocquet Université Paris-Est, CEREA Joint Laboratory École des Ponts ParisTech and EDF R&D, Champs-sur-Marne, and INRIA, Paris Rocquencourt Research Center, Paris, France

Search for other papers by Marc Bocquet in
Current site
Google Scholar
PubMed
Close
,
Carlos A. Pires Universidade de Lisboa, and Instituto Dom Luiz (IDL), Centro de Geofísica da Universidade de Lisboa (CGUL), Lisbon, Portugal

Search for other papers by Carlos A. Pires in
Current site
Google Scholar
PubMed
Close
, and
Lin Wu Université Paris-Est, CEREA Joint Laboratory École des Ponts ParisTech and EDF R&D, Champs-sur-Marne, and INRIA, Paris Rocquencourt Research Center, Paris, France

Search for other papers by Lin Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This review discusses recent advances in geophysical data assimilation beyond Gaussian statistical modeling, in the fields of meteorology, oceanography, as well as atmospheric chemistry. The non-Gaussian features are stressed rather than the nonlinearity of the dynamical models, although both aspects are entangled. Ideas recently proposed to deal with these non-Gaussian issues, in order to improve the state or parameter estimation, are emphasized.

The general Bayesian solution to the estimation problem and the techniques to solve it are first presented, as well as the obstacles that hinder their use in high-dimensional and complex systems. Approximations to the Bayesian solution relying on Gaussian, or on second-order moment closure, have been wholly adopted in geophysical data assimilation (e.g., Kalman filters and quadratic variational solutions). Yet, nonlinear and non-Gaussian effects remain. They essentially originate in the nonlinear models and in the non-Gaussian priors. How these effects are handled within algorithms based on Gaussian assumptions is then described. Statistical tools that can diagnose them and measure deviations from Gaussianity are recalled.

The following advanced techniques that seek to handle the estimation problem beyond Gaussianity are reviewed: maximum entropy filter, Gaussian anamorphosis, non-Gaussian priors, particle filter with an ensemble Kalman filter as a proposal distribution, maximum entropy on the mean, or strictly Bayesian inferences for large linear models, etc. Several ideas are illustrated with recent or original examples that possess some features of high-dimensional systems. Many of the new approaches are well understood only in special cases and have difficulties that remain to be circumvented. Some of the suggested approaches are quite promising, and sometimes already successful for moderately large though specific geophysical applications. Hints are given as to where progress might come from.

Corresponding author address: Marc Bocquet, École des Ponts ParisTech, CEREA, 6-8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne la Vallée, CEDEX 2, France. Email: bocquet@cerea.enpc.fr

This article included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Abstract

This review discusses recent advances in geophysical data assimilation beyond Gaussian statistical modeling, in the fields of meteorology, oceanography, as well as atmospheric chemistry. The non-Gaussian features are stressed rather than the nonlinearity of the dynamical models, although both aspects are entangled. Ideas recently proposed to deal with these non-Gaussian issues, in order to improve the state or parameter estimation, are emphasized.

The general Bayesian solution to the estimation problem and the techniques to solve it are first presented, as well as the obstacles that hinder their use in high-dimensional and complex systems. Approximations to the Bayesian solution relying on Gaussian, or on second-order moment closure, have been wholly adopted in geophysical data assimilation (e.g., Kalman filters and quadratic variational solutions). Yet, nonlinear and non-Gaussian effects remain. They essentially originate in the nonlinear models and in the non-Gaussian priors. How these effects are handled within algorithms based on Gaussian assumptions is then described. Statistical tools that can diagnose them and measure deviations from Gaussianity are recalled.

The following advanced techniques that seek to handle the estimation problem beyond Gaussianity are reviewed: maximum entropy filter, Gaussian anamorphosis, non-Gaussian priors, particle filter with an ensemble Kalman filter as a proposal distribution, maximum entropy on the mean, or strictly Bayesian inferences for large linear models, etc. Several ideas are illustrated with recent or original examples that possess some features of high-dimensional systems. Many of the new approaches are well understood only in special cases and have difficulties that remain to be circumvented. Some of the suggested approaches are quite promising, and sometimes already successful for moderately large though specific geophysical applications. Hints are given as to where progress might come from.

Corresponding author address: Marc Bocquet, École des Ponts ParisTech, CEREA, 6-8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne la Vallée, CEDEX 2, France. Email: bocquet@cerea.enpc.fr

This article included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Save
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127 , 27412758.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., and D. A. Darling, 1952: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat., 23 , 193212.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and H. Järvinen, 1999: Variational quality control. Quart. J. Roy. Meteor. Soc., 125 , 697722.

  • Andersson, E., M. Fisher, E. Hólm, L. Isaksen, G. Radnóti, and Y. Trémolet, 2005: Will the 4D-Var approach be defeated by nonlinearity? Tech. Rep. 479, ECMWF, 28 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/401-500/tm479.pdf].

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2007: Analysis and forecast impact of the main humidity observing systems. Quart. J. Roy. Meteor. Soc., 133 , 14731485.

    • Search Google Scholar
    • Export Citation
  • Auroux, D., 2007: Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model. Inverse Probl., 23 , 24852503.

    • Search Google Scholar
    • Export Citation
  • Barndorff-Nielsen, O. E., and D. R. Cox, 1989: Asymptotic Techniques for Use in Statistics. Meteor. Monogr., No. 31, Chapman & Hall, 252 pp.

    • Search Google Scholar
    • Export Citation
  • Bellman, R., 1961: Adaptive Control Processes: A Guided Tour. Princeton University Press, 255 pp.

  • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108 , 8775. doi:10.1029/2002JD002900.

    • Search Google Scholar
    • Export Citation
  • Berliner, M. L., and C. K. Wikle, 2007: Approximate importance sampling Monte Carlo for data assimilation. Physica D, 230 , 3749.

  • Bertino, L., G. Evensen, and H. Wackernagel, 2003: Sequential data assimilation techniques in oceanography. Int. Stat. Rev., 71 , 223241.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., 2005a: Grid resolution dependence in the reconstruction of an atmospheric tracer source. Nonlinear Processes Geophys., 12 , 219234.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., 2005b: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory. Quart. J. Roy. Meteor. Soc., 131 , 21912208.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., 2005c: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications. Quart. J. Roy. Meteor. Soc., 131 , 22092223.

    • Search Google Scholar
    • Export Citation
  • Bocquet, M., 2007: High resolution reconstruction of a tracer dispersion event. Quart. J. Roy. Meteor. Soc., 133 , 10131026.

  • Bocquet, M., 2008: Inverse modelling of atmospheric tracers: Non-Gaussian methods and second-order sensitivity analysis. Nonlinear Processes Geophys., 15 , 127143.

    • Search Google Scholar
    • Export Citation
  • Borwein, J. M., and A. S. Lewis, 2000: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, 273 pp.

  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and A. Montani, 1999: Targeted observations using singular vectors. J. Atmos. Sci., 56 , 29652985.

  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Cane, M. A., A. Kaplan, R. N. Miller, B. Y. Tang, E. C. Hackert, and A. J. Busalacchi, 1996: Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res., 101 , (C10). 2259922617.

    • Search Google Scholar
    • Export Citation
  • Carrassi, A., A. Trevisan, and F. Uboldi, 2007: Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system. Tellus, 59A , 101113.

    • Search Google Scholar
    • Export Citation
  • Carrassi, A., M. Ghil, A. Trevisan, and F. Uboldi, 2008: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system. Chaos, 18 , 023112.

    • Search Google Scholar
    • Export Citation
  • Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2006: Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Quart. J. Roy. Meteor. Soc., 132 , 543565.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75 , 257288.

  • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123 , 24492461.

  • Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observation with the adjoint vorticity equation. II: Numerical results. Quart. J. Roy. Meteor. Soc., 113 , 13291347.

    • Search Google Scholar
    • Export Citation
  • Cover, T. M., and J. A. Thomas, 1991: Elements of Information Theory. Wiley Series in Telecommunications, Wiley-Interscience, 542 pp.

  • Daescu, D. N., and I. M. Navon, 2004: Adaptive observations in the context of 4D-Var data assimilation. Meteor. Atmos. Sci., 85 , 205226.

    • Search Google Scholar
    • Export Citation
  • Davoine, X., and M. Bocquet, 2007: Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmos. Chem. Phys., 7 , 15491564.

    • Search Google Scholar
    • Export Citation
  • Del Moral, P., 2004: Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag, 566 pp.

  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131 , 33853396.

    • Search Google Scholar
    • Export Citation
  • Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10 , 197208.

    • Search Google Scholar
    • Export Citation
  • Doucet, A., N. de Freitas, and N. Gordon, Eds. 2001: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 612 pp.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , (C5). 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125 , 13421354.

  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Eyink, G. L., and S. Kim, 2006: A maximum entropy method for particle filtering. J. Stat. Phys., 123 , 10711128.

  • Fisher, M., M. Leutbecher, and G. A. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 32353246.

    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., and M. Zupanski, 2006: A data assimilation method for log-normally distributed observational errors. Quart. J. Roy. Meteor. Soc., 132 , 25052519.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135 , 18461868.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2004: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences. 3rd ed. Springer Series in Synergetics, Springer, 415 pp.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., 1992: Chaos and quadri-dimensional data assimilation: A study based on the Lorenz model. Tellus, 44A , 217.

  • Gilks, W. R., and C. Berzuini, 2001: Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. Roy. Stat. Soc. B, 63 , 127146.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, 140 , 107113.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Handschin, J., and D. Mayne, 1969: Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9 , 547559.

    • Search Google Scholar
    • Export Citation
  • Harlim, J., and B. R. Hunt, 2007: A non-Gaussian ensemble filter for assimilating infrequent noisy observations. Tellus, 59A , 225237.

    • Search Google Scholar
    • Export Citation
  • Haven, K., A. Majda, and R. Abramov, 2005: Quantifying predictability through information theory: Small sample estimation in a non-Gaussian framework. J. Comput. Phys., 206 , 334362.

    • Search Google Scholar
    • Export Citation
  • Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129 , 17181728.

  • Hólm, E., 2007: Humidity control variable and supersaturation. Proc. Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 143–150.

    • Search Google Scholar
    • Export Citation
  • Hólm, E., E. Andersson, A. Beljaars, P. Lopez, J-F. Mahfouf, A. J. Simmons, and J-N. Thépaut, 2002: Assimilation and modelling of the hydrological cycle: ECMWF’s status and plans. Tech. Rep. 383, ECMWF, 57 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/301-400/tm383.pdf].

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., 2008: A reduced-order simulated annealing approach for four-dimensional variational data assimilation in meteorology and oceanography. Int. J. Numer. Methods Fluids, 58 , 11811199.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136 , 317334.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131 , 32693289.

  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137 , 21262143.

    • Search Google Scholar
    • Export Citation
  • Huber, P. J., 1973: Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Stat., 1 , 799821.

  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A , 273277.

  • Hyvärinen, A., and E. Oja, 2000: Independent component analysis: Algorithms and applications. Neural Networks, 13 , 411430.

  • Ide, K., P. Courtier, M. Ghil, and A. Lorenc, 1999: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalnay, E., H. Li, T. Miyoshi, S-C. Yang, and J. Ballabrera, 2007: 4D-Var or ensemble Kalman filter. Tellus, 59A , 758773.

  • Kitagawa, G., 1987: Non-Gaussian state-space modeling of nonstationary time series. J. Amer. Stat. Assoc., 82 , 10321063.

  • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59 , 20572072.

  • Kleeman, R., 2007: Statitical predictibility in the atmosphere and other dynamical systems. Physica D, 230 , 6571.

  • Krüger, J., 1993: Simulated annealing: A tool for data assimilation into an almost steady model state. J. Phys. Oceanogr., 23 , 679688.

    • Search Google Scholar
    • Export Citation
  • Krysta, M., and M. Bocquet, 2007: Source reconstruction of an accidental radionuclide release at European scale. Quart. J. Roy. Meteor. Soc., 133 , 529544.

    • Search Google Scholar
    • Export Citation
  • Kullback, S., 1959: Information Theory and Statistics. Wiley, 395 pp.

  • Laroche, S., and P. Gauthier, 1998: A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow. Tellus, 50A , 557572.

    • Search Google Scholar
    • Export Citation
  • Lauvernet, C., J-M. Brankart, F. Castruccio, G. Broquet, P. Braseur, and J. Verron, 2009: A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models. Ocean Modell., 27 , 117.

    • Search Google Scholar
    • Export Citation
  • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and determinisitic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132 , 19661981.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F-X., and O. Talagrand, 1986: Variational algotrithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F-X., H-E. Ngodock, B. Luong, and J. Verron, 1997: Sensitivity analysis in variational data assimilation. J. Meteor. Soc. Japan, 75 , 245255.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecast. Mon. Wea. Rev., 102 , 409418.

  • Lermusiaux, P. F. J., and A. R. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127 , 13851407.

    • Search Google Scholar
    • Export Citation
  • Lilliefors, H. W., 1967: On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62 , 399402.

    • Search Google Scholar
    • Export Citation
  • Lions, J-L., O. P. Manley, R. Temam, and S. Wang, 1997: Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation. J. Atmos. Sci., 54 , 11371143.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Lorenc, A. C., and T. Payne, 2007: 4D-Var and the butterfly effect: Statistical four-dimensional data assimilation for a wide range of scales. Quart. J. Roy. Meteor. Soc., 133 , 607614.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Lorenz, E. N., 1969: The predictibility of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Lorenz, E. N., and K. E. Emmanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55 , 399414.

    • Search Google Scholar
    • Export Citation
  • MacKay, D. J. C., 2003: Information Theory, Inference and Learning Algorithms. Cambridge University Press, 550 pp.

  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135 , 14031423.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51 , 10371056.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A , 167194.

  • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., 137 , 43254343.

    • Search Google Scholar
    • Export Citation
  • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14 , 395408.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., W. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A , 715735.

  • Nodop, K., R. Connolly, and F. Girardi, 1998: The field campaigns of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ., 32 , 40954108.

    • Search Google Scholar
    • Export Citation
  • Papadakis, N., 2007: Assimilation de données images: Application au suivi de courbes et de champs de vecteurs. (Image data assimilation: Application to curve and vector fields tracking). Ph.D. thesis, Université de Rennes I, 242 pp.

  • Patil, D., R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86 , 58785881.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129 , 11941207.

  • Pham, D. T., J. Verron, and M. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16 , 323340.

    • Search Google Scholar
    • Export Citation
  • Pires, C. A., and R. Perdigão, 2007: Non-Gaussianity and asymmetry of the winter monthly precipitation estimation from NAO. Mon. Wea. Rev., 135 , 430448.

    • Search Google Scholar
    • Export Citation
  • Pires, C. A., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus, 48A , 96121.

    • Search Google Scholar
    • Export Citation
  • Pires, C. A., O. Talagrand, and M. Bocquet, 2010: Diagnosis and impacts of non-Gaussianity of innovations in data assimilation. Physica D, 239 , 17011717.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. R. Oke, 2008: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136 , 10421053.

    • Search Google Scholar
    • Export Citation
  • Shapiro, S. S., and M. B. Wilk, 1965: An analysis of variance test for normality (complete samples). Biometrika, 52 , 591611.

  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Simon, E., and L. Bertino, 2009: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci., 5 , 495510.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, P. Bickel, and J. L. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136 , 46294640.

    • Search Google Scholar
    • Export Citation
  • Spiller, E. T., A. Budhiraja, K. Ide, and C. K. R. T. Jones, 2008: Modified particle filter methods for assimilating Lagrangian data into a point-vortex model. Physica D, 237 , 14981506.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observation with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113 , 13111328.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation