Understanding the Anomalously Cold European Winter of 2005/06 Using Relaxation Experiments

T. Jung ECMWF, Reading, United Kingdom

Search for other papers by T. Jung in
Current site
Google Scholar
PubMed
Close
,
T. N. Palmer ECMWF, Reading, United Kingdom

Search for other papers by T. N. Palmer in
Current site
Google Scholar
PubMed
Close
,
M. J. Rodwell ECMWF, Reading, United Kingdom

Search for other papers by M. J. Rodwell in
Current site
Google Scholar
PubMed
Close
, and
S. Serrar ECMWF, Reading, United Kingdom

Search for other papers by S. Serrar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Experiments with the atmospheric component of the ECMWF Integrated Forecasting System (IFS) have been carried out to study the origin of the atmospheric circulation anomalies that led to the unusually cold European winter of 2005/06. Experiments with prescribed sea surface temperature (SST) and sea ice fields fail to reproduce the observed atmospheric circulation anomalies suggesting that the role of SST and sea ice was either not very important or the atmospheric response to SST and sea ice was not very well captured by the ECMWF model. Additional experiments are carried out in which certain regions of the atmosphere are relaxed toward analysis data thereby artificially suppressing the development of forecast error. The relaxation experiments suggest that both tropospheric circulation anomalies in the Euro–Atlantic region and the anomalously weak stratospheric polar vortex can be explained by tropical circulation anomalies. Separate relaxation experiments for the tropical stratosphere and tropical troposphere highlight the role of the easterly phase of quasi-biennial oscillation (QBO) and, most importantly, tropospheric circulation anomalies, especially over South America and the tropical Atlantic. From the results presented in this study, it is argued that the relaxation technique is a powerful diagnostic tool to understand possible remote origins of seasonal-mean anomalies.

Corresponding author address: Dr. Thomas Jung, ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom. Email: jung@ecmwf.int

Abstract

Experiments with the atmospheric component of the ECMWF Integrated Forecasting System (IFS) have been carried out to study the origin of the atmospheric circulation anomalies that led to the unusually cold European winter of 2005/06. Experiments with prescribed sea surface temperature (SST) and sea ice fields fail to reproduce the observed atmospheric circulation anomalies suggesting that the role of SST and sea ice was either not very important or the atmospheric response to SST and sea ice was not very well captured by the ECMWF model. Additional experiments are carried out in which certain regions of the atmosphere are relaxed toward analysis data thereby artificially suppressing the development of forecast error. The relaxation experiments suggest that both tropospheric circulation anomalies in the Euro–Atlantic region and the anomalously weak stratospheric polar vortex can be explained by tropical circulation anomalies. Separate relaxation experiments for the tropical stratosphere and tropical troposphere highlight the role of the easterly phase of quasi-biennial oscillation (QBO) and, most importantly, tropospheric circulation anomalies, especially over South America and the tropical Atlantic. From the results presented in this study, it is argued that the relaxation technique is a powerful diagnostic tool to understand possible remote origins of seasonal-mean anomalies.

Corresponding author address: Dr. Thomas Jung, ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom. Email: jung@ecmwf.int

Save
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific. J. Climate, 12 , 24192433.

  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere-stratosphere connection. J. Climate, 15 , 19691978.

  • Arguez, A., and Coauthors, 2007: Supplement to State of the Climate in 2006. Bull. Amer. Meteor. Soc., 88 , S1S135.

  • Bader, J., and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30 , 2169. doi:10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Bauer, H-S., V. Wulfmeyer, and L. Bengtsson, 2008: The representation of synoptic-scale weather system in a thermodynamically adjusted version of the ECHAM4 general circulation model. Meteor. Atmos. Phys., 99 , 129153.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 , 13371351.

    • Search Google Scholar
    • Export Citation
  • Boer, G., and K. Hamilton, 2008: QBO influence on extratropical predictive skill. Climate Dyn., 31 , 9871000.

  • Branković, C., T. N. Palmer, and L. Ferranti, 1994: Predictability of seasonal atmospheric variations. J. Climate, 7 , 217237.

  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45 , 128.

  • Copsey, D., R. Sutton, and J. R. Knight, 2006: Recent trends in sea level pressure in the Indian Ocean region. Geophys. Res. Lett., 33 , L19712. doi:10.1029/2006GL027175.

    • Search Google Scholar
    • Export Citation
  • Coy, L., S. Eckermann, and C. Hoppel, 2009: Planetary wave breaking and tropospheric forcing seen in the stratospheric warming of 2006. J. Atmos. Sci., 66 , 495507.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., and H. C. Davies, 2009: Key dynamical features of the 2005/06 European winter. Mon. Wea. Rev., 137 , 664678.

  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26 , 29692972.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2003: Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J. Hydrometeor., 4 , 10441066.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2005: Limitations of time-slice experiments for predicting regional climate change over South Asia. Climate Dyn., 24 , 373391.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. A. Scaife, J. J. Kennedy, A. W. Colman, A. Brookshaw, S. Cusack, and M. R. Huddleston, 2006: The 2005/06 winter in Europe and the United Kingdom: Part II—Prediction techniques and their assessment against observations. Weather, 61 , 337346.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1994: ENSO impact on Europe? Tellus, 46A , 541552.

  • Gouirand, I., and V. Moron, 2003: Variability of the impact of El Niño–Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March (1874–1996). Int. J. Climatol., 23 (13) 15491566.

    • Search Google Scholar
    • Export Citation
  • Graham, R. J., and Coauthors, 2006: The 2005/06 winter in Europe and the United Kingdom: Part I—How the Met Office forecast was produced and communicated. Weather, 61 , 327336.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and T. Jung, 2007: Local versus tropical diabatic heating and the winter North Atlantic Oscillation. J. Climate, 20 , 20582075.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 (5514) 9092.

  • Holton, J. R., and C-H. Tan, 1980: The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37 , 22002208.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G. Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57 , 11971213.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. Scaife, 2008: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2 , 3236.

  • Jung, T., 2005: Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 131 , 10451073.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and J. Barkmeijer, 2006: Sensitivity of the tropospheric circulation to changes in the strength of the stratospheric polar vortex. Mon. Wea. Rev., 134 , 21912207.

    • Search Google Scholar
    • Export Citation
  • Jung, T., T. N. Palmer, M. J. Rodwell, and S. Serrar, 2008: Diagnosing forecast error using relaxation experiments. ECMWF Newsletter, No. 116, ECMWF, Reading, United Kingdom, 24–34.

    • Search Google Scholar
    • Export Citation
  • Jung, T., M. Miller, and T. Palmer, 2010a: Diagnosing the origin of extended-range forecast errors. Mon. Wea. Rev., 138 , 23472360.

  • Jung, T., and Coauthors, 2010b: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 364 pp.

  • Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120 , 19241939.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Latif, M., K. Arpe, and E. Roeckner, 2000: Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys. Res. Lett., 27 , 727730.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2009: Impact of the QBO on surface winter climate. J. Geophys. Res., 114 , D18110. doi:10.1029/2009JD011737.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75 , 59525955.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and T. Miyasaka, 2009: Modulations in the planetary wave field by upward-propagating Rossby wave packets prior to a stratospheric warming event in January 2006. Quart. J. Roy. Meteor. Soc., 135 , 3952.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and C. K. Folland, 2002: Atlantic air-sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128 , 14131443.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and J. R. Knight, 2008: Ensemble simulations of the cold European winter of 2005–2006. Quart. J. Roy. Meteor. Soc., 134 , 16471659.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and D. L. Hartmann, 2006: Increased occurence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19 , 324332.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Untch, A., and A. J. Simmons, 1999: Increased stratospheric resolution. ECMWF Newsletter, No. 82, ECMWF, Reading, United Kingdom, 2–8.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description. Mon. Wea. Rev., 106 , 296310.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation in seasonal variation of weather, IX. Memo. Ind. Meteor. Dept., 24 (9) 275332.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1852 1030 232
PDF Downloads 259 76 8