Some Insights into the Characteristics and Dynamics of the Chilean Low-Level Coastal Jet

Qingfang Jiang University Corporation for Atmospheric Research, Monterey, California

Search for other papers by Qingfang Jiang in
Current site
Google Scholar
PubMed
Close
,
Shouping Wang Naval Research Laboratory, Monterey, California

Search for other papers by Shouping Wang in
Current site
Google Scholar
PubMed
Close
, and
Larry O’Neill Naval Research Laboratory, Monterey, California

Search for other papers by Larry O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics and dynamics of the Chilean low-level coastal jet (CLLCJ) are examined here through diagnosing real-time mesoscale model forecasts in support of the Variability of the American Monsoon System (VAMOS) Ocean–Cloud–Atmosphere Land Study (VOCALS) and additional sensitivity simulations. The forecasted surface winds over the southeast Pacific compare favorably with available observations. According to the forecasts and sensitivity simulations, the Southeast Pacific high pressure system (SEPH) plays a primary role in driving the CLLCJ. The Andes significantly intensify the CLLCJ mainly through interacting with the SEPH and anchoring a baroclinic zone along the Chilean coast. The land–sea differential heating also enhances the CLLCJ by strengthening the coastal baroclinic zone. Based on the location of the SEPH center, the CLLCJ can be separated into two types: a strong-forcing jet, with the SEPH close to the central Chilean coastline; and a weak-forcing jet, with the SEPH centered far away from the coastline. The former is much more intense and associated with stronger interaction between the SEPH and the Andes.

The CLLCJ is slightly supergeostrophic within the marine boundary layer top inversion, where weak easterlies develop, and subgeostrophic in the turbulent boundary layer below, where westerlies are present. The inversion easterlies induce strong subsidence along the coast, which contributes to the formation of the coastal low and the coastal baroclinic zone.

Corresponding author address: Qingfang Jiang, University Cooperation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93940-5502. Email: jiang@nrlmry.navy.mil

Abstract

The characteristics and dynamics of the Chilean low-level coastal jet (CLLCJ) are examined here through diagnosing real-time mesoscale model forecasts in support of the Variability of the American Monsoon System (VAMOS) Ocean–Cloud–Atmosphere Land Study (VOCALS) and additional sensitivity simulations. The forecasted surface winds over the southeast Pacific compare favorably with available observations. According to the forecasts and sensitivity simulations, the Southeast Pacific high pressure system (SEPH) plays a primary role in driving the CLLCJ. The Andes significantly intensify the CLLCJ mainly through interacting with the SEPH and anchoring a baroclinic zone along the Chilean coast. The land–sea differential heating also enhances the CLLCJ by strengthening the coastal baroclinic zone. Based on the location of the SEPH center, the CLLCJ can be separated into two types: a strong-forcing jet, with the SEPH close to the central Chilean coastline; and a weak-forcing jet, with the SEPH centered far away from the coastline. The former is much more intense and associated with stronger interaction between the SEPH and the Andes.

The CLLCJ is slightly supergeostrophic within the marine boundary layer top inversion, where weak easterlies develop, and subgeostrophic in the turbulent boundary layer below, where westerlies are present. The inversion easterlies induce strong subsidence along the coast, which contributes to the formation of the coastal low and the coastal baroclinic zone.

Corresponding author address: Qingfang Jiang, University Cooperation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93940-5502. Email: jiang@nrlmry.navy.mil

Save
  • Bakun, A., 1990: Coastal ocean upwelling. Science, 247 , 198201.

  • Bakun, A., and C. S. Nelson, 1991: The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr., 21 , 18151834.

    • Search Google Scholar
    • Export Citation
  • Bielli, S., P. Barbour, R. Samelson, R. Skyllingstad, and J. Wilczak, 2002: Numerical study of the diurnal cycle along the central Oregon coast during summertime northerly flow. Mon. Wea. Rev., 130 , 9921008.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124 , 668686.

    • Search Google Scholar
    • Export Citation
  • Chao, S., 1985: Coastal jets in the lower atmosphere. J. Phys. Oceanogr., 15 , 361371.

  • Cui, Z., M. Tjernstrom, and B. Grisogono, 1998: Idealized simulations of atmospheric coastal flow along the central coast of California. J. Appl. Meteor., 37 , 13321363.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54 , 27992812.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. A. Rutllant, 2003: Coastal lows along the subtropical West Coast of South America: Numerical simulation of a typical case. Mon. Wea. Rev., 131 , 891908.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133 , 22462261.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. A. Rutllant, and H. Fuenzalida, 2002: Coastal lows along the subtropical coast of South America: Mean structure and evolution. Mon. Wea. Rev., 130 , 7588.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1977: Coastally trapped waves in the atmosphere. Quart. J. Roy. Meteor. Soc., 103 , 431440.

  • Haack, T., and S. D. B. Burk, 2001: Summertime marine refractivity conditions along coastal California. J. Appl. Meteor., 40 , 673687.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 2002: Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32 , 19932019.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Liu, M., J. E. Nachamkin, and D. L. Westphal, 2009: On the improvement of COAMPS weather forecasts using an advanced radiative transfer model. Wea. Forecasting, 24 , 286306.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publ. 96-17, Jet Propulsion Laboratory, Pasadena, CA, 8 pp.

  • Mears, C. A., D. K. Smith, and F. J. Wentz, 2001: Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106 , (C6). 1171911729.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., 2008: Diurnal cycle of surface winds over the subtropical southeast Pacific. J. Geophys. Res., 113 , D13107. doi:10.1029/2008JD009957.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and R. D. Garreaud, 2005: Dynamics of the low-level jet off the west coast of subtropical South America. Mon. Wea. Rev., 133 , 36613677.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, K. R., and T. R. Parish, 2001: A case study of the interaction of the summertime coastal jet with the California topography. Mon. Wea. Rev., 129 , 530539.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., and A. Stoffelen, 2009: On Scatterometer ocean stress. J. Atmos. Oceanic Technol., 26 , 368382.

  • Rogerson, A. M., 1999: Transcritical flows in the coastal marine atmospheric boundary layer. J. Atmos. Sci., 56 , 27612779.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49 , 15711584.

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9 , 16981711.

  • Thompson, W. T., and S. D. Burk, 1991: An investigation of an Arctic front with a vertically nested mesoscale model. Mon. Wea. Rev., 119 , 233261.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and J. Doyle, 2002: Some improvement of Louis surface flux parameterization. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 547–550.

    • Search Google Scholar
    • Export Citation
  • Woods, R., and Coauthors, 2007: VOCALS: The VAMOS Ocean–Cloud–Atmosphere–Land Study: Improving understanding, model simulations, and prediction of the Southeast Pacific Climate System. NCAR Earth Observing Laboratory, 9 pp. [Available online at http://www.eol.ucar.edu/projects/vocals/documentation/vocals_overview.pdf].

    • Search Google Scholar
    • Export Citation
  • Zemba, H., and C. A. Friehe, 1987: The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92 , 14891496.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 514 261 8
PDF Downloads 177 51 6