• Alam, J. M., 2006: A space-time adaptive wavelet method for turbulence. Ph.D. thesis, McMaster University, 152 pp.

  • Alam, J. M., 2010: A multiscale method for simulating geophysical flows. Extended Abstracts, 31st Annual Meeting of the Canadian Applied and Industrial Mathematics Society, Newfoundland, Canada, Canadian Applied and Industrial Mathematics Society, 33.

    • Search Google Scholar
    • Export Citation
  • Alam, J. M., and J. C. Lin, 2008: Toward a fully Lagrangian atmospheric modelling system. Mon. Wea. Rev., 136, 46534667.

  • Alam, J. M., N. K.-R. Kevlahan, and O. Vasilyev, 2006: Simultaneous space–time adaptive solution of nonlinear parabolic differential equations. J. Comput. Phys., 214, 829857.

    • Search Google Scholar
    • Export Citation
  • Bacon, D. P., and Coauthors, 2000: A dynamically adapting weather and dispersion model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA). Mon. Wea. Rev., 128, 20442076.

    • Search Google Scholar
    • Export Citation
  • Bacon, D. P., and Coauthors, 2003: Dynamically adapting unstructured triangular grids: A new paradigm for geophysical fluid dynamics modeling. Proc. Indian Natl. Sci. Acad.,69A (5), 457–470.

    • Search Google Scholar
    • Export Citation
  • Bacon, D. P., N. N. Ahmad, T. J. Dunn, S. G. Gopalakrishnan, M. S. Hall, and A. Sarma, 2007: Hurricane track forecasting with OMEGA. Nat. Hazards, 41 (3), 457470.

    • Search Google Scholar
    • Export Citation
  • Behrens, J., 1996: An adaptive semi-Lagrangian advection scheme and its parallelization. Mon. Wea. Rev., 124, 23862395.

  • Behrens, J., 1998: Atmospheric and ocean modelling with an adaptive finite element solver for the shallow-water equations. Appl. Numer. Math., 26 (1–2), 217226.

    • Search Google Scholar
    • Export Citation
  • Behrens, J., 2006: Adaptive Atmospheric Modelling: Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications (Lecture Notes in Computational Science and Engineering). Springer-Verlag, 233 pp.

    • Search Google Scholar
    • Export Citation
  • Berger, M. J., and P. Colella, 1989: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82 (1), 6484.

  • Bernsen, E., H. A. Dijkstra, J. Thies, and F. W. Wubs, 2010: The application of Jacobian-free Newton–Krylov methods to reduce the spin-up time of ocean general circulation models. J. Comput. Phys., 229 (21), 81678179.

    • Search Google Scholar
    • Export Citation
  • Blayo, E., and L. Debreu, 1999: Adaptive mesh refinement for finite-difference ocean models: First experiments. J. Phys. Oceanogr., 29, 12391250.

    • Search Google Scholar
    • Export Citation
  • Boybeyi, Z., N. N. Ahmad, D. P. Bacon, T. J. Dunn, M. S. Hall, P. C. S. Lee, R. A. Sarma, and T. R. Wait, 2001: Evaluation of the operational multiscale environment model with grid adaptivity against the European tracer experiment. J. Appl. Meteor., 40, 15411558.

    • Search Google Scholar
    • Export Citation
  • Brandt, L. K., and K. K. Nomura, 2007: The physics of vortex merger and the effects of ambient stable stratification. J. Fluid Mech., 592, 413446.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L. J., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev., 118, 586612.

    • Search Google Scholar
    • Export Citation
  • Cohen, A., 2003: Numerical Analysis of Wavelet Method. Elsevier, 336 pp.

  • Cohen, A., W. Dahmen, and R. DeVore, 2001: Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput., 70 (233), 2775.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1951: Local winds. Compendium of Meteorology, T. F. Maloney, Ed., Amer. Meteor. Soc., 655–672.

  • De Stefano, G., and O. V. Vasilyev, 2010: Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence. J. Fluid Mech., 646, 453470.

    • Search Google Scholar
    • Export Citation
  • DeVore, R. A., 1998: Nonlinear approximation. Acta Numer., 7, 51150.

  • Donoho, D. L., 1992: Interpolating wavelet transforms. Tech. Rep. 408, Dept. of Statistics, Stanford University, 54 pp.

  • Durran, D. R., and A. Arakawa, 2007: Generalizing the Boussinesq approximation to stratified compressible flow. C. R. Mécanique, 335 (9–10), 655664, doi:10.1016/j.crme.2007.08.010.

    • Search Google Scholar
    • Export Citation
  • Grossmann, A., and J. Morlet, 1984: Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15 (4), 723736, doi:10.1137/0515056.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., and W. Ohfuchi, Eds., 2007: High Resolution Numerical Modelling of the Atmosphere and Ocean. Springer, 310 pp.

  • Hardenberg, J., A. McWilliams, J. C. Provenzale, A. Shchepetkin, and J. Weiss, 2000: Vortex merging in quasi-geostrophic flows. J. Fluid Mech., 412, 331353.

    • Search Google Scholar
    • Export Citation
  • Hooke, W. H., and R. M. Jones, 1986: Dissipative waves excited by gravity wave encounters with the stably stratified planetary boundary layer. J. Atmos. Sci., 43, 20482060.

    • Search Google Scholar
    • Export Citation
  • Iida, O., N. Kasagi, and Y. Nagano, 2002: Direct numerical simulation of turbulent channel flow under stable density stratification. Int. J. Heat Mass Transfer, 45 (8), 16931703.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., 2004: Adaptive grids in weather and climate modeling. Ph.D. thesis, University of Michigan, 292 pp.

  • Jablonowski, C., M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, B. van Leer, and K. G. Powell, 2006: Block-structured adaptive grids on the sphere: Advection experiments. Mon. Wea. Rev., 134, 36913713.

    • Search Google Scholar
    • Export Citation
  • Jameson, L., and T. Miyama, 2000: Wavelet analysis and ocean modeling: A dynamically adaptive numerical method WOFD-AHO. Mon. Wea. Rev., 128, 15361549.

    • Search Google Scholar
    • Export Citation
  • Kevlahan, N.-R., and O. Vasilyev, 2005: An adaptive wavelet collocation method for fluid-structure interaction. SIAM J. Sci. Comput., 26 (6), 18941915.

    • Search Google Scholar
    • Export Citation
  • Kevlahan, N.-R., J. Alam, and O. Vasilyev, 2007: Scaling of space-time modes with the Reynolds number in two-dimensional turbulence. J. Fluid Mech., 570, 217226.

    • Search Google Scholar
    • Export Citation
  • Knoll, D. A., and D. E. Keyes, 2004: Jacobian-free Newton–Krylov methods: A survey of approaches and applications. J. Comput. Phys., 193 (2), 357397.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., 2008: The vortical response to penetrative convection and the associated gravity-wave generation. Atmos. Sci. Lett., 9, 103110.

    • Search Google Scholar
    • Export Citation
  • Lauter, M., D. Handorf, N. Rakowsky, J. Behrens, S. Frickenhaus, M. Best, K. Dethloff, and W. Hiller, 2007: A parallel adaptive barotropic model of the atmosphere. J. Comput. Phys., 223 (2), 609628.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the weather research and forecasting model. Mon. Wea. Rev., 138, 796817.

    • Search Google Scholar
    • Export Citation
  • Mallat, S., 1999: A Wavelet Tour of Signal Processing. Academic Press, 805 pp.

  • Manton, M. J., 1978: On dry penetrative convection. Bound.-Layer Meteor., 14 (3), 301322.

  • Martin, C. L., and R. A. Pielke, 1983: The adequacy of the hydorostatic assumption in sea breeze modeling over flat terrain. J. Atmos. Sci., 40, 14721481.

    • Search Google Scholar
    • Export Citation
  • Mehra, M., and N. K.-R. Kevlahan, 2008: An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys., 227 (11), 56105632.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062.

    • Search Google Scholar
    • Export Citation
  • Nikiforakis, N., 2005: AMR for global atmospheric modelling. Adaptive Mesh Refinement—Theory and Applications (Lecture Notes in Computational Science and Engineering), T. Plewa, T. Linde, and V. G. Weirs, Eds., Vol. 41, Springer, 505–526.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179.

  • Pielke, R. A., 2002: Mesoscale Meterological Modelling. Academic Press, 676 pp.

  • Reisner, J., V. Mousseau, and D. Knoll, 2001: Application of the Newton–Krylov method to geophysical flows. Mon. Wea. Rev., 129, 24042415.

    • Search Google Scholar
    • Export Citation
  • Rosenberg, D., A. Fournier, P. Fischer, and A. Pouquet, 2006: Geophysical-Astrophysical Spectral-Element Adaptive Refinement (GASPAR): Object-oriented h-adaptive fluid dynamics simulation. J. Comput. Phys., 215, 5980, doi:10.1016/j.jcp.2005.10.031.

    • Search Google Scholar
    • Export Citation
  • Saad, Y., and M. H. Schultz, 1986: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7 (3), 856869.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge University Press, 311 pp.

  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480.

    • Search Google Scholar
    • Export Citation
  • Schneider, K., and O. V. Vasilyev, 2010: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech., 42, 473503.

  • Skamarock, W., J. Oliger, and R. L. Street, 1989: Adaptive grid refinement for numerical weather prediction. J. Comput. Phys., 80, 2760.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1982: The multi-dimensional Crowley advection scheme. Mon. Wea. Rev., 110, 19681983.

  • Staniforth, A., J. Coté, and J. Pudykjewicz, 1987: Comments on “Swolarkiewicz’s deformational flow.” Mon. Wea. Rev., 115, 894900.

    • Search Google Scholar
    • Export Citation
  • Sweldens, W., 1995: The construction and application of wavelets in numerical analysis. Ph.D. thesis, University of Belgium, 267 pp.

  • Sykes, R. I., and D. S. Henn, 1995: Representation of velocity gradient effects in a Gaussian puff model. J. Appl. Meteor., 34, 27152723.

    • Search Google Scholar
    • Export Citation
  • Tannehill, J. C., D. A. Anderson, and R. H. Pletcher, 1997: Computational Fluid Mechanics Heat Transfer. Taylor and Francis, 792 pp.

  • Tomlin, A., M. Berzins, J. Ware, J. Smith, and M. J. Pilling, 1997: On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources. Atmos. Environ., 31 (18), 29452959.

    • Search Google Scholar
    • Export Citation
  • Urban, K., 2002: Wavelets in Numerical Simulation: Problem Adapted Construction and Application. Springer, 212 pp.

  • Vasilyev, O. V., and C. Bowman, 2000: Second-generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys., 165, 660693.

    • Search Google Scholar
    • Export Citation
  • Vasilyev, O. V., and N.-R. Kevlahan, 2005: An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys., 206, 412431.

    • Search Google Scholar
    • Export Citation
  • Wehner, M., L. Oliker, and J. Shalf, 2008: Towards ultra-high resolution models of climate and weather. Int. J. High Perform. Comput. Appl., 22 (2), 149165, doi:10.1177/1094342007085023.

    • Search Google Scholar
    • Export Citation
  • Wesseling, P., 2004: An Introduction to Multigrid Methods. R.T. Edwards, Inc., 284 pp.

  • Whitaker, S., 1996: The Forchheimer equation: A theoretical development. Transp. Porous Media, 25, 2761.

  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 19921999.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., and B. L. Sawford, 1995: Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound.-Layer Meteor., 78, 191210.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 58
PDF Downloads 0 0 0

Toward a Multiscale Approach for Computational Atmospheric Modeling

View More View Less
  • 1 Department of Mathematics and Statistics, Memorial University of Newfoundland, Newfoundland, Canada
Restricted access

Abstract

Atmospheric motions are generally characterized by a wide range of multiple length and time scales, and a numerical method must use a fine grid to resolve such a wide range of scales. Furthermore, a very fine grid requires an extremely small time step in order to keep explicit time integration schemes stable. Therefore, high-resolution meteorological simulations are very expensive.

A novel multiscale modeling approach is, therefore, presented for simulating atmospheric flows. In this approach, a prognostic variable representing a highly intermittent multiscale feature is decomposed into a significant and a nonsignificant part using wavelets, where the significant part is represented by a small fraction of the wavelet modes. The proposed multiscale methodology has been verified for simulating three cases: Smolarkiewicz’s deformational flow model, warm thermals in a dry atmosphere, and the dynamics of a vortex pair with ambient stable stratification. Comparisons with benchmark simulations and with a reference model are evidence for the convergence and stability of the proposed model. The comparison with the reference model has revealed that about 93% of the grid points are not necessary to resolve the significant motion in a warm thermal simulation, saving about 96% of the CPU time. Moreover, the CPU time varies linearly with the number of significant wavelet modes, showing that the present fully implicit adaptive model is asymptotically optimal for this simulation. These primary results point toward the benefit of constructing multiscale atmospheric models using the adaptive wavelet methodology.

Corresponding author address: Jahrul Alam, Dept. of Mathematics and Statistics, Memorial University of Newfoundland, St John’s, NL A1C5S7, Canada. E-mail: alamj@mun.ca

Abstract

Atmospheric motions are generally characterized by a wide range of multiple length and time scales, and a numerical method must use a fine grid to resolve such a wide range of scales. Furthermore, a very fine grid requires an extremely small time step in order to keep explicit time integration schemes stable. Therefore, high-resolution meteorological simulations are very expensive.

A novel multiscale modeling approach is, therefore, presented for simulating atmospheric flows. In this approach, a prognostic variable representing a highly intermittent multiscale feature is decomposed into a significant and a nonsignificant part using wavelets, where the significant part is represented by a small fraction of the wavelet modes. The proposed multiscale methodology has been verified for simulating three cases: Smolarkiewicz’s deformational flow model, warm thermals in a dry atmosphere, and the dynamics of a vortex pair with ambient stable stratification. Comparisons with benchmark simulations and with a reference model are evidence for the convergence and stability of the proposed model. The comparison with the reference model has revealed that about 93% of the grid points are not necessary to resolve the significant motion in a warm thermal simulation, saving about 96% of the CPU time. Moreover, the CPU time varies linearly with the number of significant wavelet modes, showing that the present fully implicit adaptive model is asymptotically optimal for this simulation. These primary results point toward the benefit of constructing multiscale atmospheric models using the adaptive wavelet methodology.

Corresponding author address: Jahrul Alam, Dept. of Mathematics and Statistics, Memorial University of Newfoundland, St John’s, NL A1C5S7, Canada. E-mail: alamj@mun.ca
Save