• Baldauf, M., 2008a: A linear solution for flow over mountains and its comparison with the COSMO model. COSMO Newsl., 8, 1924.

  • Baldauf, M., 2008b: Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. J. Comput. Phys., 227, 66386659.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., 2010: Linear stability analysis of Runge–Kutta based partial time-splitting schemes for the Euler equations. Mon. Wea. Rev., 138, 44754496.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., and J.-P. Schulz, 2004: Prognostic precipitation in the Lokal Modell (LM) of the DWD. COSMO Newsl., 4, 177179.

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in neutral atmosphere. J. Geophys. Res., 67, 30953102.

    • Search Google Scholar
    • Export Citation
  • Blahak, U., 2008: Towards a better representation of high density ice particles in a state-of-the-art two-moment bulk microphysical scheme. Proc. 15th Int. Conf. Clouds and Precipitation, Cancun, Mexico, ICCP/IAMAS. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_07/Blahak_extended_1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061015.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., cited 2009: AROME system documentation. CNRM/GAME, Météo-France. [Available online at http://www.cnrm.meteo.fr/gmap.]

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Dierer, S., and Coauthors, 2009: Deficiencies in quantitative precipitation forecasts: Sensitivity studies using the COSMO model. Meteor. Z., 18, 631645.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and J. Förstner, 2004: Development of a kilometer-scale NWP-system: LMK. COSMO Newsl., 4, 159167.

  • Doms, G., and Coauthors, 2004: A description of the nonhydrostatic regional model LM. Part II: Physical parameterization. Tech. Rep., Deutscher Wetterdienst, Offenbach, Germany, 146 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

    • Search Google Scholar
    • Export Citation
  • Easter, R. C., 1993: Two modified versions of Bott’s positive definite numerical advection scheme. Mon. Wea. Rev., 121, 297304.

  • Field, P., R. Hogan, P. Brown, A. Illingworth, T. Choulartona, and R. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017.

    • Search Google Scholar
    • Export Citation
  • Förstner, J., M. Baldauf, and A. Seifert, 2006: Courant number independent advection of the moisture quantities for the LMK. COSMO Newsl., 6, 5164.

    • Search Google Scholar
    • Export Citation
  • Hamill, T., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167.

  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., and Coauthors, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319338.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 (4), 851875.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96 (2–3), 286301.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsl., 1, 8997.

  • Reinhardt, T., and A. Seifert, 2006: A three-category ice scheme for LMK. COSMO Newsl., 6, 115120.

  • Ritter, B., and J. F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897.

    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71100.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298.

  • Sauvageot, H., 1992: Radar Meteorology. Artech House, 384 pp.

  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric predicition models. Mon. Wea. Rev., 130, 24592480.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., J.-H. Oh, and D. Rosenfeld, 1988: A parameterization of the evaporation of rainfall. Mon. Wea. Rev., 116, 18871895.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rain shaft model. J. Atmos. Sci., 65, 36083619.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59–60, 265281.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and M. Weisman, 2005: A comparison of bulk microphysical schemes for cloud resolving NWP. Sixth WRF/15th MM5 Users’ Workshop, Boulder, CO, NCAR. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session6/2-Seifert.pdf.]

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. Beheng, 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 4566.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. Beheng, 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6788.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2006: Positive-definite and monotonic limiters for unrestricted-time-step transport schemes. Mon. Wea. Rev., 134, 22412250.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355.

  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and N. Wood, 2008: Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comput. Phys., 227, 34453464.

    • Search Google Scholar
    • Export Citation
  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H.-W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the non-hydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122.

    • Search Google Scholar
    • Export Citation
  • Thomas, S., C. Girard, G. Doms, and U. Schättler, 2000: Semi-implicit scheme for the DWD Lokal-Modell. Meteor. Atmos. Phys., 73, 105125.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 61
PDF Downloads 32 32 32

Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities

View More View Less
  • 1 Deutscher Wetterdienst, Offenbach, Germany
  • | 2 Amt für Geoinformationswesen der Bundeswehr, Offenbach, Germany
Restricted access

Abstract

Since April 2007, the numerical weather prediction model, COSMO (Consortium for Small Scale Modelling), has been used operationally in a convection-permitting configuration, named COSMO-DE, at the Deutscher Wetterdienst (DWD; German weather service). Here the authors discuss the model changes that were necessary for the convective scale, and report on the experience from the first years of operational application of the model. For COSMO-DE the ability of the numerical solver to treat small-scale structures has been improved by using a Runge–Kutta method, which allows for the use of higher-order upwind advection schemes. The one-moment cloud microphysics parameterization has been extended by a graupel class, and adaptations for describing evaporation of rain and stratiform precipitation processes were made. Comparisons with a much more sophisticated two-moment scheme showed only minor differences in most cases with the exception of strong squall-line situations. Whereas the deep convection parameterization was switched off completely, small-scale shallow convection was still parameterized by the appropriate part of the Tiedtke scheme. During the first year of operational use, convective events in synoptically driven situations were satisfactorily simulated. Also the daily cycles of summertime 10-m wind and 1-h precipitation sums were well captured. However, it became evident that the boundary layer description had to be adapted to enhance convection initiation in airmass convection situations. Here the asymptotic Blackadar length scale l had proven to be a sensitive parameter.

Corresponding author address: Dr. Michael Baldauf, Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: michael.baldauf@dwd.de

Abstract

Since April 2007, the numerical weather prediction model, COSMO (Consortium for Small Scale Modelling), has been used operationally in a convection-permitting configuration, named COSMO-DE, at the Deutscher Wetterdienst (DWD; German weather service). Here the authors discuss the model changes that were necessary for the convective scale, and report on the experience from the first years of operational application of the model. For COSMO-DE the ability of the numerical solver to treat small-scale structures has been improved by using a Runge–Kutta method, which allows for the use of higher-order upwind advection schemes. The one-moment cloud microphysics parameterization has been extended by a graupel class, and adaptations for describing evaporation of rain and stratiform precipitation processes were made. Comparisons with a much more sophisticated two-moment scheme showed only minor differences in most cases with the exception of strong squall-line situations. Whereas the deep convection parameterization was switched off completely, small-scale shallow convection was still parameterized by the appropriate part of the Tiedtke scheme. During the first year of operational use, convective events in synoptically driven situations were satisfactorily simulated. Also the daily cycles of summertime 10-m wind and 1-h precipitation sums were well captured. However, it became evident that the boundary layer description had to be adapted to enhance convection initiation in airmass convection situations. Here the asymptotic Blackadar length scale l had proven to be a sensitive parameter.

Corresponding author address: Dr. Michael Baldauf, Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: michael.baldauf@dwd.de
Save