• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758.

    • Search Google Scholar
    • Export Citation
  • Beezley, J. D., and J. Mandel, 2007: Morphing ensemble Kalman filters. Tellus, 60A, 131140.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Burger, J. O., 1985: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 624 pp.

  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

    • Search Google Scholar
    • Export Citation
  • Cohn, S., and R. Todling, 1996: Approximate data assimilation schemes for stable and unstable dynamics. J. Meteor. Soc. Japan, 74, 6375.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367.

  • Evensen, G., and P. J. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Aghulas Current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 124, 8596.

    • Search Google Scholar
    • Export Citation
  • Francis, B. A., 1987: A Course in H Control Theory. Springer-Verlag, 156 pp.

  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, J. L. Anderson, and C. Snyder, 2009: Comments on “Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems.” J. Atmos. Sci., 66, 34983500.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., and D. T. Pham, 2004: An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J. Mar. Syst., 45, 173188.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. T. Pham, and J. Blum, 2001: A semi-evolutive partially local filter for data assimilation. Mar. Pollut. Bull., 43, 164174.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst., 36, 101127.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317334.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 400 pp.

  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. Trans. ASME, Ser. D. J. Basic Eng., 82, 3545.

  • Lorenz, E. N., 1996: Predictability—A problem partly solved. Predictability, T. Palmer, Ed., ECMWF, 1–18.

  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. M. Moroz, 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549562.

  • Luo, X., I. M. Moroz, and I. Hoteit, 2010: Scaled unscented transform Gaussian sum filter: Theory and application. Physica D, 239, 684701.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., L. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A, 715735.

  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428.

  • Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16, 323340.

    • Search Google Scholar
    • Export Citation
  • Schlee, F. H., C. J. Standish, and N. F. Toda, 1967: Divergence in the Kalman filter. AIAA J., 5, 11141120.

  • Shaked, U., and N. Berman, 1995: H nonlinear filtering of discrete-time processes. IEEE Trans. Sig. Proc., 43, 22052209.

  • Simon, D., 2006: Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches. Wiley-Interscience, 552 pp.

  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490.

    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, P. J., 2003: A variance-minimizing filter for large-scale applications. Mon. Wea. Rev., 131, 20712084.

  • Van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114.

  • Verlaan, M., and A. W. Heemink, 1997: Tidal flow forecasting using reduced rank square root filters. Stoch. Hydrol. Hydraul., 11, 349368.

    • Search Google Scholar
    • Export Citation
  • Wang, D., and X. Cai, 2008: Robust data assimilation in hydrological modeling—A comparison of Kalman and H-infinity filters. Adv. Water Resour., 31, 455472.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 17101726.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 153 153
PDF Downloads 0 0 0

Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

View More View Less
  • 1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Restricted access

Abstract

A robust ensemble filtering scheme based on the H filtering theory is proposed. The optimal H filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H filter is more robust than the Kalman filter, in the sense that the estimation error in the H filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter.

The original form of the H filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

Corresponding author address: Luo Xiaodong, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: xiaodong.luo@kaust.edu.sa

Abstract

A robust ensemble filtering scheme based on the H filtering theory is proposed. The optimal H filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H filter is more robust than the Kalman filter, in the sense that the estimation error in the H filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter.

The original form of the H filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

Corresponding author address: Luo Xiaodong, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: xiaodong.luo@kaust.edu.sa
Save