• Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822.

  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 4364.

  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., J. Simpson, and W.-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124, 21002125.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., R. A. Houze Jr., and F. D. Marks Jr., 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 32213243.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model. NCAR Tech. Note, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442.

  • Houze, R. A., Jr., F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943962.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1975: Budget analyses of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 2559.

  • Li, M.-H., M.-J. Yang, R. Soong, and H.-L. Huang, 2005: Simulating typhoon floods with gauge data and mesoscale modeled rainfall in a mountainous watershed. J. Hydrometeor., 6, 306323.

    • Search Google Scholar
    • Export Citation
  • Li, X., C.-H. Sui, and K.-M. Lau, 2002: Precipitation efficiency in the tropical deep convective regime: A 2-D cloud resolving modeling study. J. Meteor. Soc. Japan, 80, 205212.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120.

  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930.

  • Marks, F. D., Jr., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. J. Rasmussen, and R. T. Bruitjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1961: Some aspects of Hurricane Daisy, 1958. Tellus, 13, 181213.

  • Sui, C.-H., and Coauthors, 2002: Typhoon Nari and Taipei flood—A pilot meteorology-hydrology study. Eos, Trans. Amer. Geophys. Union, 83, 265–270.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 43584370.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 45064513.

  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: The topographic effects. J. Atmos. Sci., 65, 30953115.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., D.-L. Zhang, X.-D. Tang, and Y. Zhang, 2011: A modeling study of Typhoon Nari (2001) at landfall: 2. Structural changes and terrain-induced asymmetries. J. Geophys. Res., 116, D09112, doi:10.1029/2010JD015445.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 70
PDF Downloads 6 6 6

Water Budget of Typhoon Nari (2001)

View More View Less
  • 1 Department of Atmospheric Sciences, and Institute of Hydrological and Oceanic Sciences, National Central University, and Taiwan Typhoon Flood Research Institute, Chung-Li, Taiwan
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
Restricted access

Abstract

Although there have been many observational and modeling studies of tropical cyclones (TCs), the understanding of TCs’ budgets of vapor and condensate and the changes of budgets after TCs’ landfall is still quite limited. In this study, high-resolution (2-km horizontal grid size and 2-min data interval) model output from a cloud-resolving simulation of Typhoon Nari (2001) is used to examine the vapor and condensate budgets and the respective changes of the budgets after Nari’s landfall on Taiwan. All budget terms are directly derived from the model except for a small residual term. For the vapor budget, while Nari is over the ocean, evaporation from the ocean surface is 11% of the inward horizontal vapor transport within 150 km of the storm center, and the net horizontal vapor convergence into the storm is 88% of the net condensation. The ocean source of water vapor in the inner core is a small portion (5.5%) of horizontal vapor import, consistent with previous studies. After landfall, Taiwan’s steep terrain enhances Nari’s secondary circulation significantly and produces stronger horizontal vapor import at low levels, resulting in a 22% increase in storm-total condensation. Precipitation efficiency, defined from either the large-scale or microphysics perspective, is increased 10%–20% over the outer-rainband region after landfall, in agreement with the enhanced surface rainfall over the complex terrain.

Corresponding author address: Dr. Ming-Jen Yang, Department of Atmospheric Sciences, National Central University, 300 Chung-Da Road, Chung-Li, 320, Taiwan. E-mail: mingjen@cc.ncu.edu.tw

Abstract

Although there have been many observational and modeling studies of tropical cyclones (TCs), the understanding of TCs’ budgets of vapor and condensate and the changes of budgets after TCs’ landfall is still quite limited. In this study, high-resolution (2-km horizontal grid size and 2-min data interval) model output from a cloud-resolving simulation of Typhoon Nari (2001) is used to examine the vapor and condensate budgets and the respective changes of the budgets after Nari’s landfall on Taiwan. All budget terms are directly derived from the model except for a small residual term. For the vapor budget, while Nari is over the ocean, evaporation from the ocean surface is 11% of the inward horizontal vapor transport within 150 km of the storm center, and the net horizontal vapor convergence into the storm is 88% of the net condensation. The ocean source of water vapor in the inner core is a small portion (5.5%) of horizontal vapor import, consistent with previous studies. After landfall, Taiwan’s steep terrain enhances Nari’s secondary circulation significantly and produces stronger horizontal vapor import at low levels, resulting in a 22% increase in storm-total condensation. Precipitation efficiency, defined from either the large-scale or microphysics perspective, is increased 10%–20% over the outer-rainband region after landfall, in agreement with the enhanced surface rainfall over the complex terrain.

Corresponding author address: Dr. Ming-Jen Yang, Department of Atmospheric Sciences, National Central University, 300 Chung-Da Road, Chung-Li, 320, Taiwan. E-mail: mingjen@cc.ncu.edu.tw
Save