• Adams, C. E., and G. L. Weatherly, 1981: Some effect of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res., 86, 41614172.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481497.

  • Andreas, E. L, 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852862.

  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440.

  • Andreas, E. L, and K. A. Emanuel, 2001: Effect of sea spray on tropical cyclones intensity. J. Atmos. Sci., 58, 37413751.

  • Bao, J. W., J. M. Wilczak, J. K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210.

    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., 1996: Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press, 412 pp.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631643.

  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea spray on the surface boundary. Bound.-Layer Meteor., 140, 361381.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Blasck, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685690.

  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344.

  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., C. W. Fairall, and J.-W. Bao, 1999: Modeling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 363–407.

    • Search Google Scholar
    • Export Citation
  • Lykossov, V., 2001: Atmospheric and oceanic boundary layer physics. Wind Stress over the Ocean, I. S. F. Jones and Y. Toba, Eds., Cambridge University Press, 58–81.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176.

  • Moon, I., I. Ginis, T. Hara, and B. Thomas, 2007: Physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 28692878.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteor., 130, 229247.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: An evolutionary study using a hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 543561.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note-475+STR, 113 pp.

  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1997: Reply. J. Atmos. Sci., 54, 579579.

  • Wang, Y., 1995: On an inverse balance equation in sigma-coordinates for model initialization. Mon. Wea. Rev., 123, 482488.

  • Wang, Y., J. D. Kepert, and G. Holland, 2001: On the effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 77
PDF Downloads 8 8 8

Parameterizations of Sea-Spray Impact on the Air–Sea Momentum and Heat Fluxes

View More View Less
  • 1 NOAA/ESRL, Boulder, Colorado
Restricted access

Abstract

This paper focuses on parameterizing the effect of sea spray at hurricane-strength winds on the momentum and heat fluxes in weather prediction models using the Monin–Obukhov similarity theory (a common framework for the parameterizations of air–sea fluxes). In this scheme, the mass-density effect of sea spray is considered as an additional modification to the stratification of the near-surface profiles of wind, temperature, and moisture in the marine surface boundary layer (MSBL). The overall impact of sea-spray droplets on the mean profiles of wind, temperature, and moisture depends on the wind speed at the level of sea-spray generation. As the wind speed increases, the mean droplet size and the mass flux of sea-spray increase, rendering an increase of stability in the MSBL and the leveling-off of the surface drag. Sea spray also tends to increase the total air–sea sensible and latent heat fluxes at high winds. Results from sensitivity testing of the scheme in a numerical weather prediction model for an idealized case of hurricane intensification are presented along with a dynamical interpretation of the impact of the parameterized sea-spray physics on the structure of the hurricane boundary layer.

Corresponding author address: Jian-Wen Bao, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: jian-wen.bao@noaa.gov

Abstract

This paper focuses on parameterizing the effect of sea spray at hurricane-strength winds on the momentum and heat fluxes in weather prediction models using the Monin–Obukhov similarity theory (a common framework for the parameterizations of air–sea fluxes). In this scheme, the mass-density effect of sea spray is considered as an additional modification to the stratification of the near-surface profiles of wind, temperature, and moisture in the marine surface boundary layer (MSBL). The overall impact of sea-spray droplets on the mean profiles of wind, temperature, and moisture depends on the wind speed at the level of sea-spray generation. As the wind speed increases, the mean droplet size and the mass flux of sea-spray increase, rendering an increase of stability in the MSBL and the leveling-off of the surface drag. Sea spray also tends to increase the total air–sea sensible and latent heat fluxes at high winds. Results from sensitivity testing of the scheme in a numerical weather prediction model for an idealized case of hurricane intensification are presented along with a dynamical interpretation of the impact of the parameterized sea-spray physics on the structure of the hurricane boundary layer.

Corresponding author address: Jian-Wen Bao, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: jian-wen.bao@noaa.gov
Save