• Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. J. Meteor. Atmos. Phys., 59, 3364.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev., 135, 13271353.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Coleman, L. M., M. Stolzenburg, T. C. Marshall, and M. Stanley, 2008: Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms. J. Geophys. Res., 113, D09208, doi:10.1029/2007JD009459.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the Relative Diffusional Growth Rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. L. Heinselman, D. R. MacGorman, and E. C. Bruning, 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 138, 18091825.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and W.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice crystals during the riming process. Nature, 249, 2628.

  • Hallett, J., and C. P. R. Saunders, 1979: Charge separation associated with secondary ice. J. Atmos. Sci., 36, 22302235.

  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103117.

  • Johnson, E. V., and E. R. Mansell, 2006: Three-dimensional lightning mapping of the central Oklahoma supercell on 26 May 2004. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.5. [Available online at http://ams.confex.com/ams/Annual2006/techprogram/paper_104352.htm.]

    • Search Google Scholar
    • Export Citation
  • Knapp, D. I., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Assoc. Dig., 19, 3542.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academies Press, 90–113.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 11071125.

    • Search Google Scholar
    • Export Citation
  • Larson, H. R., and E. J. Stansbury, 1974: Association of lightning flashes with precipitation cores extending to height 7 km. J. Atmos. Terr. Phys., 36, 15471553.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and P. R. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., GE-17, 162171.

    • Search Google Scholar
    • Export Citation
  • Lighezzolo, R. A., R. G. Pereyra, and E. E. Avila, 2010: Measurements of electric charge separated during the formation of rime by the accretion of supercooled droplets. Atmos. Chem. Phys., 10, 16611669.

    • Search Google Scholar
    • Export Citation
  • Lund, N., D. MacGorman, T. Schuur, M. Biggerstaff, and D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40, 459478.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., T. Filiaggi, R. L. Holle, and R. A. Brown, 2007: Negative cloud-to-ground lightning flash rates relative to VIL, maximum reflectivity, cell height, and cell isolation. J. Lightning Res., 1, 132147.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, J. M. Straka, and C. L. Ziegler, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, 4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171174.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 71417157.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., and L. H. Ruhnke, 1998: Model of electric charges in thunderstorms and associated lightning. J. Geophys. Res., 103, 23 29923 308.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190.

  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109.

    • Search Google Scholar
    • Export Citation
  • Payne, C. D., T. J. Schuur, D. R. MacGorman, M. I. Biggerstaff, K. M. Kuhlman, and W. D. Rust, 2010: Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Mon. Wea. Rev., 138, 24052425.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 24062421.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationship to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518535.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three dimensional lightning mapping system: Initial observations in New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possible inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, 1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271, doi:10.1016/j.atmosres.2004.11.029.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025.

  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007a: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007b: Radar and lightning observations of normal and inverted polarity storms from STEPS. Mon. Wea. Rev., 135, 36823706.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Weiss, S., W. D. Rust, D. R. MacGorman, E. Bruning, and P. Krehbiel, 2008: Evolving complex electrical structure of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741756.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 20 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265.

    • Search Google Scholar
    • Export Citation
  • Williams, E., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics, and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1929: Some thundercloud problems. J. Franklin Inst., 208, 112.

  • Young, K. C., 1993: Microphysical Processes in Clouds. Oxford University Press, 427 pp.

  • Ziegler, C. L., E. R. Mansell, and E. C. Bruning, 2010: Impact of varying CCN concentration on the precipitation process of a simulated convective storm. Preprints, 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., JP3.17. [Available online at http://ams.confex.com/ams/pdfpapers/171866.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 2 2 2

The Timing of Cloud-to-Ground Lightning Relative to Total Lightning Activity

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Vaisala Inc., Tucson, Arizona
  • | 4 New Mexico Institute of Mining and Technology, Socorro, New Mexico
Restricted access

Abstract

The first flash produced by a storm usually does not strike ground, but little has been published concerning the time after the first flash before a cloud-to-ground flash occurs, particularly for a variety of climatological regions. To begin addressing this issue, this study analyzed data from very-high-frequency (VHF) lightning mapping systems, which detect flashes of all types, and from the U.S. National Lightning Detection Network (NLDN), which identifies flash type and detects roughly 90% of cloud-to-ground flashes overall. VHF mapping data were analyzed from three regions: north Texas, Oklahoma, and the high plains of Colorado, Kansas, and Nebraska. The percentage of storms in which a cloud-to-ground flash was detected in the first minute of lightning activity varied from 0% in the high plains to 10%–20% in Oklahoma and north Texas. The distribution of delays to the first cloud-to-ground flash varied similarly. In Oklahoma and north Texas, 50% of storms produced a cloud-to-ground flash within 5–10 min, and roughly 10% failed to produce a cloud-to-ground flash within 1 h. In the high plains, however, it required 30 min for 50% of storms to have produced a cloud-to-ground flash, and 20% produced no ground flash within 1 h. The authors suggest that the reason high plains storms take longer to produce cloud-to-ground lightning is because the formation of the lower charge needed to produce most cloud-to-ground flashes is inhibited either by delaying the formation of precipitation in the mid- and lower levels of storms or by many of the storms having an inverted-polarity electrical structure.

Corresponding author address: Donald R. MacGorman, National Severe Storms Laboratory, WRDD, Rm. 3510, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: don.macgorman@noaa.gov

Abstract

The first flash produced by a storm usually does not strike ground, but little has been published concerning the time after the first flash before a cloud-to-ground flash occurs, particularly for a variety of climatological regions. To begin addressing this issue, this study analyzed data from very-high-frequency (VHF) lightning mapping systems, which detect flashes of all types, and from the U.S. National Lightning Detection Network (NLDN), which identifies flash type and detects roughly 90% of cloud-to-ground flashes overall. VHF mapping data were analyzed from three regions: north Texas, Oklahoma, and the high plains of Colorado, Kansas, and Nebraska. The percentage of storms in which a cloud-to-ground flash was detected in the first minute of lightning activity varied from 0% in the high plains to 10%–20% in Oklahoma and north Texas. The distribution of delays to the first cloud-to-ground flash varied similarly. In Oklahoma and north Texas, 50% of storms produced a cloud-to-ground flash within 5–10 min, and roughly 10% failed to produce a cloud-to-ground flash within 1 h. In the high plains, however, it required 30 min for 50% of storms to have produced a cloud-to-ground flash, and 20% produced no ground flash within 1 h. The authors suggest that the reason high plains storms take longer to produce cloud-to-ground lightning is because the formation of the lower charge needed to produce most cloud-to-ground flashes is inhibited either by delaying the formation of precipitation in the mid- and lower levels of storms or by many of the storms having an inverted-polarity electrical structure.

Corresponding author address: Donald R. MacGorman, National Severe Storms Laboratory, WRDD, Rm. 3510, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: don.macgorman@noaa.gov
Save