An Analytic Vortex Initialization Technique for Idealized Tropical Cyclone Studies in AGCMs

Kevin A. Reed Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Kevin A. Reed in
Current site
Google Scholar
PubMed
Close
and
Christiane Jablonowski Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper discusses the design of idealized tropical cyclone experiments in atmospheric general circulation models (AGCMs). The evolution of an initially weak, warm-core vortex is investigated over a 10-day period with varying initial conditions that include variations of the maximum wind speed and radius of maximum wind. The initialization of the vortex is built upon prescribed 3D moisture, pressure, temperature, and velocity fields that are embedded into tropical environmental conditions. The initial fields are in exact hydrostatic and gradient-wind balance in an axisymmetric form. The formulation is then generalized to provide analytic initial conditions for an approximately balanced vortex in AGCMs with height-based vertical coordinates. An extension for global models with pressure-based vertical coordinates is presented. The analytic initialization technique can easily be implemented on any AGCM computational grid.

The characteristics of the idealized tropical cyclone experiments are illustrated in high-resolution model simulations with the Community Atmosphere Model version 3.1 (CAM 3.1) developed at the National Center for Atmospheric Research. The finite-volume dynamical core in CAM 3.1 with 26 vertical levels is used, and utilizes an aquaplanet configuration with constant sea surface temperatures of 29°C. The impact of varying initial conditions and horizontal resolutions on the evolution of the tropical cyclone–like vortex is investigated. Identical physical parameterizations with a constant parameter set are used at all horizontal resolutions. The sensitivity studies reveal that the initial wind speed and radius of maximum wind need to lie above a threshold to support the intensification of the analytic initial vortex at horizontal grid spacings of 0.5° and 0.25° (or 55 and 28 km in the equatorial regions). The thresholds lie between 15 and 20 m s−1 with a radius of maximum wind of about 200–250 km. In addition, a convergence study with the grid spacings 1.0°, 0.5°, 0.25°, and 0.125° (or 111, 55, 28, and 14 km) shows that the cyclone gets more intense and compact with increasing horizontal resolution. The 0.5°, 0.25°, and 0.125° simulations exhibit many tropical cyclone–like characteristics such as a warm-core, low-level wind maxima, a slanted eyewall-like vertical structure and a relatively calm eye. The 0.125° simulation even starts to resolve spiral rainbands and reaches maximum wind speeds of about 72–83 m s−1 at low levels. These wind speeds are equivalent to a category-5 tropical cyclone on the Saffir–Simpson hurricane scale. It is suggested that the vortex initialization technique can be used as an idealized tool to study the impact of varying resolutions, physical parameterizations, and numerical schemes on the simulation and representation of tropical cyclone–like vortices in global atmospheric models.

Corresponding author address: Kevin Reed, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109. Email: kareed@umich.edu

Abstract

The paper discusses the design of idealized tropical cyclone experiments in atmospheric general circulation models (AGCMs). The evolution of an initially weak, warm-core vortex is investigated over a 10-day period with varying initial conditions that include variations of the maximum wind speed and radius of maximum wind. The initialization of the vortex is built upon prescribed 3D moisture, pressure, temperature, and velocity fields that are embedded into tropical environmental conditions. The initial fields are in exact hydrostatic and gradient-wind balance in an axisymmetric form. The formulation is then generalized to provide analytic initial conditions for an approximately balanced vortex in AGCMs with height-based vertical coordinates. An extension for global models with pressure-based vertical coordinates is presented. The analytic initialization technique can easily be implemented on any AGCM computational grid.

The characteristics of the idealized tropical cyclone experiments are illustrated in high-resolution model simulations with the Community Atmosphere Model version 3.1 (CAM 3.1) developed at the National Center for Atmospheric Research. The finite-volume dynamical core in CAM 3.1 with 26 vertical levels is used, and utilizes an aquaplanet configuration with constant sea surface temperatures of 29°C. The impact of varying initial conditions and horizontal resolutions on the evolution of the tropical cyclone–like vortex is investigated. Identical physical parameterizations with a constant parameter set are used at all horizontal resolutions. The sensitivity studies reveal that the initial wind speed and radius of maximum wind need to lie above a threshold to support the intensification of the analytic initial vortex at horizontal grid spacings of 0.5° and 0.25° (or 55 and 28 km in the equatorial regions). The thresholds lie between 15 and 20 m s−1 with a radius of maximum wind of about 200–250 km. In addition, a convergence study with the grid spacings 1.0°, 0.5°, 0.25°, and 0.125° (or 111, 55, 28, and 14 km) shows that the cyclone gets more intense and compact with increasing horizontal resolution. The 0.5°, 0.25°, and 0.125° simulations exhibit many tropical cyclone–like characteristics such as a warm-core, low-level wind maxima, a slanted eyewall-like vertical structure and a relatively calm eye. The 0.125° simulation even starts to resolve spiral rainbands and reaches maximum wind speeds of about 72–83 m s−1 at low levels. These wind speeds are equivalent to a category-5 tropical cyclone on the Saffir–Simpson hurricane scale. It is suggested that the vortex initialization technique can be used as an idealized tool to study the impact of varying resolutions, physical parameterizations, and numerical schemes on the simulation and representation of tropical cyclone–like vortices in global atmospheric models.

Corresponding author address: Kevin Reed, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109. Email: kareed@umich.edu

Save
  • Atlas, R. , and Coauthors , 2005: Hurricane forecasting with the high-resolution NASA finite volume general circulation model. Geophys. Res. Lett., 32 , L03807. doi:10.1029/2004GL021513.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L. , K. I. Hodges , M. Esch , N. Keenlyside , L. Kornblueh , J. Luo , and T. Yamagata , 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A , 539561. doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H. , and R. Rotunno , 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66 , 148158.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D. , and Coauthors , 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Tech. Note NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, CO, 226 pp.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D. , and Coauthors , 2006: The formulation and atmospheric simulation of the Community Atmosphere Model: CAM3. J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A. , 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A. , 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Emanuel, K. A. , 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31 , 75104.

  • Fudeyasu, H. , Y. Wang , M. Satoh , T. Nasuno , H. Miura , and W. Yanase , 2008: Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys. Res. Lett., 35 , L22808. doi:10.1029/2008GL036003.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A. , and G. M. Lackmann , 2009: Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137 , 745765.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J. , 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Holland, G. J. , 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40 , 328342.

  • Jablonowski, C. , and D. L. Williamson , 2006a: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132 , 29432975.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C. , and D. L. Williamson , 2006b: A baroclinic wave test case for dynamical cores of General Circulation Models: Model intercomparisons. NCAR Tech. Note NCAR/TN-469+STR, National Center for Atmospheric Research, Boulder, CO, 89 pp.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L. , 1958: Mean soundings for the West Indies area. J. Meteor., 15 , 9197.

  • Leslie, L. M. , and G. J. Holland , 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56 , 101110. doi:10.1007/BF01022523.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J. , 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Lorant, V. , and J. Royer , 2001: Sensitivity of equatorial convection to horizontal resolution in aquaplanet simulations with a variable-resolution GCM. Mon. Wea. Rev., 129 , 27302745.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D. , and C. Jablonowski , 2008: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev., 136 , 699711.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B. , and B. J. Hoskins , 2000: A standard test for AGCMs including their physical parametrizations. I: The proposal. Atmos. Sci. Lett., 1 , 101107. doi:10.1006/asle.2000.0019.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S. , 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56 , 241266.

  • Nolan, D. S. , and E. D. Rappin , 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35 , L14805. doi:10.1029/2008GL034147.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S. , M. T. Montgomery , and L. D. Grasso , 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58 , 32433270.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S. , E. D. Rappin , and K. A. Emanuel , 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133 , 20852107.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K. , J. Yoshimura , H. Yoshimura , R. Mizuta , S. Kusunoki , and A. Noda , 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84 (2) 259276.

    • Search Google Scholar
    • Export Citation
  • Persing, J. , and M. T. Montgomery , 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Phillips, N. A. , 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14 , 184185.

  • Randall, D. A. , and Coauthors , 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R. , and K. A. Emanuel , 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W. , R. Atlas , J.-D. Chern , O. Reale , S.-J. Lin , T. Lee , and J. Chang , 2006a: The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices. Geophys. Res. Lett., 33 , L05801. doi:10.1029/2005GL024594.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W. , R. Atlas , O. Reale , S.-J. Lin , J.-D. Chern , J. Chang , C. Henze , and J.-L. Li , 2006b: Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett., 33 , L13813. doi:10.1029/2006GL026143.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J. , and D. M. Burridge , 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E. , 2008: The ability of climate models to generate tropical cyclones: Implications for prediction. Climate Change Research Progress, L. Peretz, Ed., Nova Publishers, 313–329.

    • Search Google Scholar
    • Export Citation
  • Wang, D. , X. Liang , Y. Zhao , and B. Wang , 2008: A comparison of two tropical cyclone bogussing schemes. Wea. Forecasting, 23 , 194204.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. , and J. Xu , 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67 , 97116.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L. , 2008a: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus, 60 , 848862.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L. , 2008b: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60 , 839847.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y. , K. Oouchi , M. Satoh , H. Tomita , and W. Yanase , 2010: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett., 37 , L07709. doi:10.1029/2010GL042518.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. , and J. A. Sippel , 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66 , 19441961.

  • Zhang, G. J. , and N. A. McFarlane , 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhao, M. , I. M. Held , S.-J. Lin , and G. A. Vecchi , 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22 , 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 728 251 27
PDF Downloads 342 104 7