Investigation of Microphysical Processes Occurring in Isolated Convection during NAME

Angela K. Rowe Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Angela K. Rowe in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
, and
Timothy J. Lang Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To address questions regarding microphysical processes occurring in the core North American monsoon region, data from NCAR’s S-band polarimetric Doppler radar (S-Pol) deployed during the North American Monsoon Experiment (NAME) in the summer of 2004, were used to investigate the location, size, and type of hydrometeors in convection. A cell identification and tracking algorithm was applied to this data over 100 h of microphysical scans, characterized by increased temporal and vertical resolution, to locate and track individual convective elements. Only isolated cells over land were included for this study to investigate potential elevation-dependent trends in microphysical processes in this region.

Examples of intense, isolated convection over all elevations revealed deep cells and polarimetric signatures comparable to other studies of tropical and midlatitude convection. A case over the low terrain highlighted deep, isolated convection with precipitation-sized ice extending to 15 km. In addition, the presence of differential reflectivity ZDR columns in these cells indicated the lofting of supercooled water above the melting level, and an enhanced linear depolarization ratio LDR “cap” above the column implied subsequent freezing to produce graupel. Similar features were also observed in an isolated cell over the western slopes, highlighting the combined roles of collision–coalescence and melting precipitation-sized ice for producing intense rainfall over the lower elevations. Despite previous observations of weaker and shallower cells with less precipitation ice over the Sierra Madre Occidental (SMO), case studies and general statistics using polarimetric data reveal the potential for accretional processes to also play an important role in producing intense rainfall over these higher elevations. For these isolated SMO cells, reduced warm-cloud depths, increased ice mass observed just above the melting level, and a narrower distribution of drop sizes suggest a reduced role of warm-rain processes compared to intense cells over the lower terrain. A potential relationship between microphysical processes and degree of organization is also hypothesized and will be the focus of a future study.

Corresponding author address: Angela K. Rowe, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: arowe@atmos.colostate.edu

Abstract

To address questions regarding microphysical processes occurring in the core North American monsoon region, data from NCAR’s S-band polarimetric Doppler radar (S-Pol) deployed during the North American Monsoon Experiment (NAME) in the summer of 2004, were used to investigate the location, size, and type of hydrometeors in convection. A cell identification and tracking algorithm was applied to this data over 100 h of microphysical scans, characterized by increased temporal and vertical resolution, to locate and track individual convective elements. Only isolated cells over land were included for this study to investigate potential elevation-dependent trends in microphysical processes in this region.

Examples of intense, isolated convection over all elevations revealed deep cells and polarimetric signatures comparable to other studies of tropical and midlatitude convection. A case over the low terrain highlighted deep, isolated convection with precipitation-sized ice extending to 15 km. In addition, the presence of differential reflectivity ZDR columns in these cells indicated the lofting of supercooled water above the melting level, and an enhanced linear depolarization ratio LDR “cap” above the column implied subsequent freezing to produce graupel. Similar features were also observed in an isolated cell over the western slopes, highlighting the combined roles of collision–coalescence and melting precipitation-sized ice for producing intense rainfall over the lower elevations. Despite previous observations of weaker and shallower cells with less precipitation ice over the Sierra Madre Occidental (SMO), case studies and general statistics using polarimetric data reveal the potential for accretional processes to also play an important role in producing intense rainfall over these higher elevations. For these isolated SMO cells, reduced warm-cloud depths, increased ice mass observed just above the melting level, and a narrower distribution of drop sizes suggest a reduced role of warm-rain processes compared to intense cells over the lower terrain. A potential relationship between microphysical processes and degree of organization is also hypothesized and will be the focus of a future study.

Corresponding author address: Angela K. Rowe, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: arowe@atmos.colostate.edu

Save
  • Adams, D. K. , and A. C. Comrie , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Badan-Dangon, A. , C. E. Dorman , M. A. Merrifield , and C. D. Winant , 1991: The lower atmosphere over the Gulf of California. J. Geophys. Res., 96 , 877896.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H. , 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14 , 121137.

  • Bluestein, H. B. , and M. H. Jain , 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42 , 17111732.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N. , and V. Chandrasekar , 2001: Polarimetric Doppler Weather Radar Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N. , L. Liu , P. C. Kennedy , V. Chandrasekar , and S. A. Rutledge , 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59 , 331.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N. , K. Knupp , A. Detwiler , L. Liu , I. J. Caylor , and R. A. Black , 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125 , 21312160.

    • Search Google Scholar
    • Export Citation
  • Buechler, D. E. , and S. J. Goodman , 1990: Echo size and asymmetry: Impact on NEXRAD storm identification. J. Appl. Meteor., 29 , 962969.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D. , and S. A. Rutledge , 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128 , 26872710.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R. , W. A. Petersen , L. D. Carey , S. A. Rutledge , and M. A. F. Silva-Dias , 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107 , 8077. doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R. , and R. A. Anthes , 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Crane, R. K. , 1979: Automatic cell detection and tracking. IEEE Trans. Geosci. Electron., GE-17 , 250262.

  • DeMott, C. A. , and S. A. Rutledge , 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • Dixon, M. , and G. Wiener , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10 , 785797.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. , R. A. Maddox , K. Howard , and S. Reyes , 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Dye, J. E. , W. P. Winn , J. J. Jones , and D. W. Breed , 1989: The electrification of New Mexico thunderstorms. 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94 , 86438656.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. , and G. M. Heymsfield , 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteor., 30 , 98116.

    • Search Google Scholar
    • Export Citation
  • Gauthier, M. L. , W. A. Petersen , and L. D. Carey , 2010: Cell mergers and their impact on cloud-to-ground lightning over the Houston area. Atmos. Res., 96 , 626632.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J. , W. J. Shuttleworth , and Z. L. Yang , 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130 , 12821298.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J. , A. Jimenez , C. J. Watts , J. Garatuza-Payan , and W. J. Shuttleworth , 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment event rain gauge network. Mon. Wea. Rev., 132 , 29382953.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J. , L. Brito-Castillo , and W. J. Shuttleworth , 2006: Hydroclimatology of the North American monsoon region in northwest Mexico. J. Hydrol., 316 , 5370.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J. , C. J. Watts , J. Garatuza-Payan , and J. Cesar-Rodriguez , 2007: Spatial and temporal patterns of precipitation intensity as observed by the NAME event rain gauge network from 2002 to 2004. J. Climate, 20 , 17341750.

    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S. , and R. E. Orville , 1999: Thunderstorm characteristics of cloud-to-ground at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14 , 640649.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W. , Y. Yao , and X. L. Wang , 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W. , and Coauthors , 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87 , 7994.

  • Houze Jr., R. A. , D. C. Wilton , and B. F. Smull , 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133 , 13891411.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. , and V. N. Bringi , 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12 , 643648.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J. , J. W. F. Goddard , and S. M. Cherry , 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113 , 469489.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. , 1983: Microphysical interpretation of multi-parameter radar measurements in rain. Part I: Interpretation of polarization measurements and estimation of raindrop shapes. J. Atmos. Sci., 40 , 17921802.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. , M. Murphy , and E. Krider , 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35 , 343354.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. T. , P. L. MacKeen , A. Witt , E. D. Mitchell , G. J. Stumpf , M. D. Eilts , and K. W. Thomas , 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13 , 263276.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H. , P. E. Cielsielski , T. S. L’Ecuyer , and A. J. Newman , 2010: Diurnal cycle of convection during the 2004 North American Monsoon Experiment. J. Climate, 23 , 10601078.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. , and Coauthors , 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81 , 24332455.

    • Search Google Scholar
    • Export Citation
  • Laksen, H. R. , and E. J. Stansbury , 1974: Association of lightning flashes with precipitation cores extending to height 7 km. J. Atmos. Terr. Phys., 36 , 15471553.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J. , D. A. Ahijevych , S. W. Nesbitt , R. E. Carbone , S. A. Rutledge , and R. Cifelli , 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20 , 17131733.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J. , S. W. Nesbitt , and L. D. Carey , 2009: On the correction of partial beam blockage in polarimetric radar data. J. Atmos. Oceanic Technol., 26 , 943957.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J. , S. A. Rutledge , and R. Cifelli , 2010: Polarimetric radar observations of convection in northwestern Mexico during the North American Monsoon Experiment. J. Hydrometeor., 11 , 13451357.

    • Search Google Scholar
    • Export Citation
  • Li, L. , W. Schmid , and J. Joss , 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34 , 12861300.

    • Search Google Scholar
    • Export Citation
  • Liu, H. , and V. Chandrasekar , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • Michimoto, K. , 1991: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku District. Part I: Observation and analysis of thunderclouds in summer and winter. J. Meteor. Soc. Japan, 69 , 327335.

    • Search Google Scholar
    • Export Citation
  • Michimoto, K. , 1993: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku District. Part II: Observation and analysis of “single flash” thunderclouds in midwinter. J. Meteor. Soc. Japan, 71 , 195204.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G. , L. Jay Miller , R. L. Vaughan , and H. W. Frank , 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3 , 143161.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W. , R. Cifelli , and S. A. Rutledge , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134 , 27022721.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W. , D. J. Gochis , and T. J. Lang , 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9 , 728743.

    • Search Google Scholar
    • Export Citation
  • Pereira, L. G. , 2008: Characteristics and organization of precipitating features during NAME 2004 and their relationship to environmental conditions. Ph.D. dissertation, Atmospheric Science, Colorado State University, Fort Collins, CO, 229 pp.

  • Petersen, W. A. , S. A. Rutledge , and R. E. Orville , 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124 , 602620.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A. , and Coauthors , 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80 , 191216.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M. , and S. A. Rutledge , 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55 , 27152729.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E. , and E. T. Garvey , 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273 , 287289.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , 1987: Objective method for analysis and tracking of convective cells as seen by radar. J. Atmos. Oceanic Technol., 4 , 422434.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , and W. L. Woodley , 2003: Closing the 5-year circle: From cloud seeding to space and back to climate change through precipitation physics. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 59–80.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K. , S. A. Rutledge , T. J. Lang , P. E. Ciesielski , and S. M. Saleeby , 2008: Elevation-dependent trends in precipitation observed during NAME. Mon. Wea. Rev., 136 , 49624979.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T. , 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17 , 23812384.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T. , and K. Kuhara , 1993: Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. J. Meteor. Soc. Japan, 71 , 2131.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A. , L. J. Miller , K. C. Wiens , and S. A. Rutledge , 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62 , 41274150.

    • Search Google Scholar
    • Export Citation
  • Vincent, B. R. , L. D. Carey , D. Schneider , K. Keeter , and R. Gonski , 2003: Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A North Carolina study. Natl. Wea. Dig., 27 , 3544.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R. , A. B. White , K. S. Gage , and F. M. Ralph , 2007: Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004. J. Climate, 20 , 16931712.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. , and R. A. Houze , 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z. , S. E. Yuter , R. A. Houze Jr. , and D. E. Kingsmill , 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129 , 18821904.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1725 1250 109
PDF Downloads 289 134 10