• Allen, D. J., , A. R. Douglass, , R. B. Rood, , and P. D. Guthrie, 1991: Application of a monotonic upstream-biased transport scheme to three-dimensional constituent transport calculations. Mon. Wea. Rev., 119, 24562464.

    • Search Google Scholar
    • Export Citation
  • Berger, M., , and J. Oliger, 1984: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53, 484512.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1983: A wave prediction system for real-time sea state forecasting. Quart. J. Roy. Meteor. Soc., 109, 393416.

  • Hanert, E., , D. Y. Le Roux, , V. Legat, , and E. Deleersnijder, 2004: Advection schemes for unstructured grid ocean modelling. Ocean Modell., 7, 3958.

    • Search Google Scholar
    • Export Citation
  • Hubbard, M. E., , and N. Nikiforakis, 2003: A three-dimensional, adaptive, Godunov-type model for global atmospheric flows. Mon. Wea. Rev., 131, 18481864.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., , M. Herzog, , J. E. Penner, , R. C. Oehmke, , Q. F. Stout, , B. van Leer, , and K. G. Powell, 2006: Block-structured adaptive grids on the sphere: Advection experiments. Mon. Wea. Rev., 134, 36913713.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., , R. C. Oehmke, , and Q. F. Stout, 2009: Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Philos. Trans. Roy. Soc., 367A, 44974522.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Kageyama, A., , and T. Sato, 2004: The “yin–yang grid”: An overset grid in spherical geometry. Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , J. G. Li, , and D. Smeed, 2003: On the efficiency of statistical assimilation techniques in the presence of model and data error. J. Geophys. Res., 108, 3113, doi:10.1029/2002JC001444.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1965: Numerical integration of the primitive equations on a spherical grid. Mon. Wea. Rev., 93, 399415.

  • Leonard, B. P., 1991: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng., 88, 1774.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., , A. P. Lock, , and M. K. MacVean, 1996: Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon. Wea. Rev., 124, 25882606.

    • Search Google Scholar
    • Export Citation
  • Li, J. G., 2003: A multiple-cell flat-level model for atmospheric tracer dispersion over complex terrain. Bound.-Layer Meteor., 107, 289322.

    • Search Google Scholar
    • Export Citation
  • Li, J. G., 2008: Upstream nonoscillatory advection schemes. Mon. Wea. Rev., 136, 47094729.

  • Li, J. G., 2009: Spherical multiple-cell grid to include the Arctic in global ocean wave model. Proc. 11th Int. Workshop on Wave Hindcasting and Forecasting, Halifax, NS, Canada, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM). [Available online at http://www.waveworkshop.org/11thWaves/index.htm.]

    • Search Google Scholar
    • Export Citation
  • Li, X., , D. Chen, , X. Peng, , K. Takahashi, , and F. Xiao, 2008: A multimoment finite-volume shallow-water model on the yin–yang overset spherical grid. Mon. Wea. Rev., 136, 30663086.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , and J. S. Chang, 1996: A mass-conservative, positive-definite, and efficient Eulerian advection scheme in spherical geometry and on a nonuniform grid system. J. Appl. Meteor., 35, 18971913.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., , and T. D. Ringler, 2005: An incremental remapping transport scheme on a spherical geodesic grid. Mon. Wea. Rev., 133, 23352350.

    • Search Google Scholar
    • Export Citation
  • McDonald, A., , and J. R. Bates, 1989: Semi-Lagrangian integration of a gridpoint shallow water model on the sphere. Mon. Wea. Rev., 117, 130137.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., , and B. Machenhauer, 2002: The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon. Wea. Rev., 130, 649667.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., , J. Cote, , and A. Staniforth, 1999: Cascade interpolation for semi-Lagrangian advection over the sphere. Quart. J. Roy. Meteor. Soc., 125, 14451468.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., , J. S. Scroggs, , and F. H. M. Semazzi, 2002: Efficient conservative global transport schemes for climate and chemistry models. Mon. Wea. Rev., 130, 20592073.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., , M. McElroy, , S. Wofsy, , G. Russel, , and D. Rind, 1987: Chemistry of the global troposphere: Fluorocarbons as tracers of air motion. J. Geophys. Res., 92, 65796613.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., , and M. Rancic, 1997: Conformal octagon: An attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteor. Atmos. Phys., 62, 3348.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., 1994: Conservative shape-preserving two-dimensional transport on a spherical reduced grid. Mon. Wea. Rev., 122, 13371350.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., 1987: Semi-Lagrangian advection on a Gaussian grid. Mon. Wea. Rev., 115, 608619.

  • Robert, A., , T. L. Yee, , and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113, 388394.

    • Search Google Scholar
    • Export Citation
  • Roe, P. L., 1985: Some contributions to the modelling of discontinuous flows. Large-Scale Computations in Fluid Mechanics, E. Engquist, S. Osher, and R. J. C. Sommerville, Eds., Lectures in Applied Mathematics, Vol. 22, American Mathematical Society, 163–193.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144.

    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., 1985: A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Mon. Wea. Rev., 113, 10501065.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002: Alleviating the garden sprinkler effect in wind wave models. Ocean Modell., 4, 269289.

  • Tolman, H. L., , B. Balasubramaniyan, , L. D. Burroughs, , D. V. Chalikov, , Y. Y. Chao, , H. S. Chen, , and V. M. Gerald, 2002: Development and implementation of wind-generated ocean surface wave models at NCEP. Wea. Forecasting, 17, 311333.

    • Search Google Scholar
    • Export Citation
  • WAMDI group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810.

  • Williamson, D. L., , and G. L. Browning, 1973: Comparison of grids and difference approximations for numerical weather prediction over a sphere. J. Appl. Meteor., 12, 264274.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , J. B. Drake, , J. J. Hack, , R. Jakob, , and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow-water equations in spherical geometry. J. Comput. Phys., 102, 221224.

    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., , N. Wood, , and A. Staniforth, 2004: SLICE-S: A Semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere. Quart. J. Roy. Meteor. Soc., 130, 26492664.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 3
PDF Downloads 28 28 1

Global Transport on a Spherical Multiple-Cell Grid

View More View Less
  • 1 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

Second- and third-order upstream nonoscillatory (UNO) advection schemes are applied on a spherical multiple-cell (SMC) grid for global transport. Similar to the reduced grid, the SMC grid relaxes the Courant–Friedrichs–Lewy (CFL) restriction of the Eulerian advection time step on the conventional latitude–longitude grid by zonally merging cells toward the poles. Round polar cells are introduced to remove the polar singularity of the spherical coordinate system. The unstructured feature of the SMC grid allows unused cells to be removed out of memory and transport calculations. Solid-body rotation and deformation flow tests are used for comparison with other transport schemes. Application on the global ocean surface is used to demonstrate the flexibility of the SMC grid by removing all land points and making possible the extension of global ocean surface wave models to cover the Arctic in response to the retreating sea ice in recent summers. Numerical results suggest that UNO schemes on the SMC grid are suitable for global transport.

Corresponding author address: Dr Jian-Guo Li, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: jian-guo.li@metoffice.gov.uk

Abstract

Second- and third-order upstream nonoscillatory (UNO) advection schemes are applied on a spherical multiple-cell (SMC) grid for global transport. Similar to the reduced grid, the SMC grid relaxes the Courant–Friedrichs–Lewy (CFL) restriction of the Eulerian advection time step on the conventional latitude–longitude grid by zonally merging cells toward the poles. Round polar cells are introduced to remove the polar singularity of the spherical coordinate system. The unstructured feature of the SMC grid allows unused cells to be removed out of memory and transport calculations. Solid-body rotation and deformation flow tests are used for comparison with other transport schemes. Application on the global ocean surface is used to demonstrate the flexibility of the SMC grid by removing all land points and making possible the extension of global ocean surface wave models to cover the Arctic in response to the retreating sea ice in recent summers. Numerical results suggest that UNO schemes on the SMC grid are suitable for global transport.

Corresponding author address: Dr Jian-Guo Li, Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: jian-guo.li@metoffice.gov.uk
Save