• Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 29632978.

    • Search Google Scholar
    • Export Citation
  • Bane, J. M., Jr., , and K. E. Osgood, 1989: Wintertime air–sea interaction processes across the Gulf Stream. J. Geophys. Res., 94, 755772.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., , S. A. Michelson, , P. J. Neiman, , F. M. Ralph, , and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Bauer, M., , and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and S. Hagemann, 2004: Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A, 456471.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301.

    • Search Google Scholar
    • Export Citation
  • Béranger, K., , B. Barnier, , S. Gulev, , and M. Crépon, 2006: Comparing 20 years of precipitation estimates from different sources over the World Ocean. Ocean Dyn., 56, 104138.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., , and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty. Bull. Amer. Meteor. Soc., 90, 645656.

    • Search Google Scholar
    • Export Citation
  • Blender, R., , K. Fraedrich, , and F. Lunkeit, 1997: Identification of cyclone track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741.

    • Search Google Scholar
    • Export Citation
  • Bojariu, R., , and F. Giorgi, 2005: The North Atlantic Oscillation signal in a regional climate simulation for the European region. Tellus, 57A, 641653.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., , G. M. Lackmann, , and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168182.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1999: Mesoscale aspects of extratropical cyclones: An observational perspective. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Gronås, Eds., Amer. Meteor. Soc., 265–283.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., , D. Entekahabi, , and P. S. Eagleson, 1993: Estimation of precipitation recycling. J. Climate, 6, 10771089.

  • Carlson, T. N., 1998: Mid-Latitude Weather Systems. Amer. Meteor. Soc., 507 pp.

  • Chang, C.-B., , D. J. Perkey, , and W.-D. Chen, 1987: Observed dynamic structure of an intense oceanic cyclone. Mon. Wea. Rev., 115, 11271139.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63, 815839.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1992: An air–sea interaction model for cold-air outbreaks. J. Phys. Oceanogr., 22, 821842.

  • Dacre, H. F., , and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99115.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254.

  • Field, P. R., , A. Gettelman, , R. B. Neale, , R. Wood, , P. J. Rasch, , and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 58875903.

    • Search Google Scholar
    • Export Citation
  • Fosdick, E. K., , and P. J. Smith, 1991: Latent heat release in an extratropical cyclone that developed explosively over the southeastern United States. Mon. Wea. Rev., 119, 193207.

    • Search Google Scholar
    • Export Citation
  • Geng, Q., , and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter analyzed from NCEP–NCAR reanalysis data. J. Climate, 14, 38633873.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., , and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., , and C. Castello, 2000: A study of frontal cyclone surface and 300-hPa geostrophic kinetic energy distribution and scale change. Mon. Wea. Rev., 128, 28652874.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., , O. Zolina, , and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., , T. Jung, , and E. Ruprecht, 2002: Interannual and seasonal variability in the intensities of synoptic-scale processes in the North Atlantic midlatitudes from the NCEP–NCAR reanalysis data. J. Climate, 15, 809828.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., , T. Jung, , and E. Ruprecht, 2007: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I: Uncertainties in climate means. J. Climate, 20, 279301.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., , J. L. Evans, , and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models, Part 1: Theory. Tellus, 28, 473485.

  • Hines, K. M., , D. H. Bromwich, , and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13, 39403952.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., , B. J. Hoskins, , J. Boyle, , and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864.

  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Hotta, D., , and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of mean baroclinicity along storm tracks. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Jacobs, N. A., , G. M. Lackmann, , and S. Raman, 2005: The Combined effects of Gulf Stream–induced baroclinicity and upper-level vorticity on U.S. east coast extratropical cyclogenesis. Mon. Wea. Rev., 133, 24942501.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , S. K. Gulev, , I. Rudeva, , and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 18391857.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • König, W., , R. Sausen, , and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 22172231.

  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , L. F. Bosart, , and D. Keyser, 1996: Planetary- and synoptic-scale characteristics of explosive wintertime cyclogenesis over the western North Atlantic Ocean. Mon. Wea. Rev., 124, 26722702.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , L. D. Keyser, , and F. Bosart, 1997: A characteristic life cycle of upper-tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 125, 27292758.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 19842006.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., , and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130, 21882209.

    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., , R. M. Wakimoto, , and F. Roux, 1997: Observations of mesoscale circulations within extratropical cyclones over the North Atlantic Ocean during ERICA. Mon. Wea. Rev., 125, 341364.

    • Search Google Scholar
    • Export Citation
  • Löptien, U., , O. Zolina, , S. K. Gulev, , M. Latif, , and V. Soloviov, 2008: Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Climate Dyn., 31, doi:10.1007/s00382-007-0355-5.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., , P. J. Smith, , and P. Zwack, 1992: A diagnosis of the explosive development of two extratropical cyclones. Mon. Wea. Rev., 120, 14901523.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., , and N. Marsili, 2002: Surface cyclolysis in the North Pacific Ocean. Part II: Piecewise potential vorticity analysis of a rapid cyclolysis event. Mon. Wea. Rev., 130, 12641281.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., , R. D. Grauman, , and N. Marsili, 2001: Surface cyclolysis in the North Pacific Ocean. Part I: A synoptic climatology. Mon. Wea. Rev., 129, 748765.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., , and J. E. Martin, 2002: Surface cyclolysis in the North Pacific Ocean. Part III: Composite local energetics of tropospheric-deep cyclone decay associated with rapid surface cyclolysis. Mon. Wea. Rev., 130, 25072529.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15, 20202037.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., , and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880904.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , M. A. Shapiro, , and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878.

    • Search Google Scholar
    • Export Citation
  • Patoux, J., , X. Yuan, , and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 1. Scatterometer-derived pressure fields and storm tracking. J. Geophys. Res., 114, D04105, doi:10.1029/2008JD010873.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., , D. L. Bradbury, , and K. Pedersen, 1962: The Norwegian cyclone models in relation to heat and cold sources. Geophys. Norv., 24, 243280.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , T. Spangehl, , U. Ulbrich, , and P. Speth, 2005: Sensitivities of cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14, 823838.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., , P. Della-Marta, , C. Schwierz, , H. Wernli, , and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589.

  • Roebber, P. J., 1989: On the statistical analysis of cyclone deepening rates. Mon. Wea. Rev., 117, 22932298.

  • Rogers, E., , and L. F. Bosart, 1986: An investigation of explosively deepening oceanic cyclones. Mon. Wea. Rev., 114, 702718.

  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., , and S. K. Gulev, 2007: Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Wea. Rev., 135, 25682587.

    • Search Google Scholar
    • Export Citation
  • Ruprecht, E., , S. S. Schroeder, , and S. Ubl, 2002: The North Atlantic Oscillation and the water transport over Europe. Meteor. Z., 11, 395401.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., , and J. R. Gyakum, 1980: Synoptic–dynamic climatology of the “bomb.”. Mon. Wea. Rev., 108, 15891606.

  • Schneidereit, A., , R. Blender, , and K. Fraedrich, 2010: Radius-depth model for midlatitude cyclones in re-analysis data and simulations. Quart. J. Roy. Meteor. Soc., 136, 5060.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123.

  • Serreze, M. C., , F. Carse, , R. G. Barry, , and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with the recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , R. M. Samelson, , and E. Skyllingstad, 2010: Air–sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Climate, 23, 26512670.

    • Search Google Scholar
    • Export Citation
  • Sickmöller, M., , R. Blender, , and K. Fraedrich, 2000: Observed winter cyclone tracks in the Northern Hemisphere in re-analysed ECMWF data. Quart. J. Roy. Meteor. Soc., 126, 591620.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2000: Size changes over the life of sea level cyclones in the NCEP reanalysis. Mon. Wea. Rev., 128, 41184125.

  • Simmonds, I., , and K. Keay, 2000a: Mean Southern Hemisphere extratropical cyclone behavior in the 40-Year NCEP–NCAR reanalysis. J. Climate, 13, 873885.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2000b: Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J. Climate, 13, 550561.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation, intensity, and climatology. Wea. Forecasting, 12, 591608.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., , and I. G. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12, 34673485.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., , and M. J. Revell, 2000: Classification and composite diagnosis of extratropical cyclogenesis events in the southwest Pacific. Mon. Wea. Rev., 128, 10891105.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., , and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., , H. Nakamura, , M. Nonaka, , and S. P. Xie, 2009: Influences of the Kuroshio/Oyashio extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381.

  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen, , and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127143.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., , G. C. Leckebusch, , and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wang, C.-C., , and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., , H. Wan, , and ValR. Swail, 2006: Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J. Climate, 19, 896915.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., , and C. Schwierz, 2006: Surface cyclones in the ERA40 data set (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507.

    • Search Google Scholar
    • Export Citation
  • WGASF Group, 2000: Intercomparison and validation of ocean–atmosphere energy flux fields. Final Rep. of the Joint WCRP/SCOR Working Group on Air–Sea Fluxes, WMO, Geneva, Switzerland, 305 pp. [Available online at http://www.soc.soton.ac.uk/JRD/MET/WGASF.]

    • Search Google Scholar
    • Export Citation
  • White, G., 2000: Long-term trends in the NCEP/NCAR reanalysis. Second Int. Conf. on Reanalyses, Reading, United Kingdom, WMO/TD 985, Geneva, Switzerland, 54–57.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., , W. Perrie, , W. Zhang, , and J. Jiang, 2008: Characteristics of atmosphere–ocean interactions along North Atlantic extratropical storm tracks. J. Geophys. Res., 113, D14124, doi:10.1029/2007JD008854.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., , and M. Jean, 1989: Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6–8 March 1986. Atmos.–Ocean, 27, 5986.

    • Search Google Scholar
    • Export Citation
  • Yoshida, A., , and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , J. Patoux, , and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res., 114, D04106, doi:10.1029/2008JD010874.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., , and S. K. Gulev, 2002: Improving accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130, 748759.

  • Zolina, O., , and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J. Climate, 16, 27172734.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 18
PDF Downloads 101 101 19

Composite Analysis of North Atlantic Extratropical Cyclones in NCEP–NCAR Reanalysis Data

View More View Less
  • 1 P. P. Shirshov Institute of Oceanology, and Faculty of Earth Science, Moscow State University, Moscow, Russia
© Get Permissions
Restricted access

Abstract

Composite analysis of North Atlantic midlatitudinal winter cyclones is performed using NCEP–NCAR reanalysis data for the 60-yr period from 1948 to 2007. The composites were developed using an advanced methodology involving the coordinate transform of cyclones into a nondimensional azimuthal coordinate system and the further collocation of fields. Composite analysis is performed for air–sea turbulent fluxes, heat content, precipitable water, and precipitation for 576 oceanic cyclones generated in the Gulf Stream area in winter (January–March) from 1948 to 2007. For the region of cyclone generation over the Gulf Stream, composites were analyzed for different cyclone intensities. Over the whole North Atlantic, composites were developed throughout the life cycle and for different cyclone types classified by the regions of their migration. These classifications allow the case-to-case variability to be minimized and the robustness of the composite to be boosted. In the region of cyclone generation over the Gulf Stream, characteristics of the composites strongly depend on the cyclone intensity quantified through the radial sea level pressure difference between the cyclone’s edge and its center. Stronger cyclone intensity implies larger turbulent fluxes in the rear of a cyclone and stronger precipitation in the forward part. Cyclones gradually dry with the water content and precipitation rate decreasing by about 40% and 50%–70%, respectively, during the lifetime. Although composites of air–sea turbulent fluxes show locally very strong positive fluxes in the rear part of the cyclone, the total air–sea turbulent fluxes provided by cyclones are not significantly different from the averaged background fluxes. This shows that the formation of extreme air–sea fluxes by cyclones is connected to the larger-scale circulation conditions, particularly to the cyclone–anticyclone transition zones.

Corresponding author address: Irina Rudeva, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117997 Moscow, Russia. E-mail: rudeva@sail.msk.ru

Abstract

Composite analysis of North Atlantic midlatitudinal winter cyclones is performed using NCEP–NCAR reanalysis data for the 60-yr period from 1948 to 2007. The composites were developed using an advanced methodology involving the coordinate transform of cyclones into a nondimensional azimuthal coordinate system and the further collocation of fields. Composite analysis is performed for air–sea turbulent fluxes, heat content, precipitable water, and precipitation for 576 oceanic cyclones generated in the Gulf Stream area in winter (January–March) from 1948 to 2007. For the region of cyclone generation over the Gulf Stream, composites were analyzed for different cyclone intensities. Over the whole North Atlantic, composites were developed throughout the life cycle and for different cyclone types classified by the regions of their migration. These classifications allow the case-to-case variability to be minimized and the robustness of the composite to be boosted. In the region of cyclone generation over the Gulf Stream, characteristics of the composites strongly depend on the cyclone intensity quantified through the radial sea level pressure difference between the cyclone’s edge and its center. Stronger cyclone intensity implies larger turbulent fluxes in the rear of a cyclone and stronger precipitation in the forward part. Cyclones gradually dry with the water content and precipitation rate decreasing by about 40% and 50%–70%, respectively, during the lifetime. Although composites of air–sea turbulent fluxes show locally very strong positive fluxes in the rear part of the cyclone, the total air–sea turbulent fluxes provided by cyclones are not significantly different from the averaged background fluxes. This shows that the formation of extreme air–sea fluxes by cyclones is connected to the larger-scale circulation conditions, particularly to the cyclone–anticyclone transition zones.

Corresponding author address: Irina Rudeva, P. P. Shirshov Institute of Oceanology, RAS, 36 Nakhimovsky Ave., 117997 Moscow, Russia. E-mail: rudeva@sail.msk.ru
Save