• Beljaars, A. C. M., , J. L. Walmsley, , and P. A. Talor, 1987: A mixed spectral finite-difference model for neutrally stratified boundary layer flow over roughness changes and topography. Bound.-Layer Meteor., 38, 273303.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., , and M. T. Montgomery, 2008: Observed structure, evolution, and intensity of category five Hurricane Isabel (2003) from 12–14 September. Mon. Wea. Rev., 136, 20232036.

    • Search Google Scholar
    • Export Citation
  • Bernard-Trottolo, S., , B. Campistron, , A. Druilhet, , F. Lohou, , and F. Said, 2003: TRAC98: Detection of coherent structures in a convective boundary layer using airborne measurements. Bound.-Layer Meteor., 111, 181224.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetry numerical model simulations. Mon. Wea. Rev., 137, 17701789.

    • Search Google Scholar
    • Export Citation
  • Detering, H. W., , and D. Etling, 1985: Application of the E-ϵ turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33, 113133.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , J. A. Zhang, , J. R. French, , C. McCormick, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II. Latent heat fluxes. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. G. Black, , and W. M. Gray, 2002a: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. G. Black, , and W. M. Gray, 2002b: Flight-level thermodynamic instrument wetting errors in hurricanes. Part II: Implications. Mon. Wea. Rev., 130, 842851.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005b: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321344.

  • Franklin, J. L., , M. L. Black, , and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244.

    • Search Google Scholar
    • Export Citation
  • French, J. R., , W. M. Drennan, , J. A. Zhang, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1996: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Hanna, S. R., 1968: A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum. J. Atmos. Sci., 25, 10261033.

    • Search Google Scholar
    • Export Citation
  • Holt, T., , and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterization for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761780.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , E. J. Zipser, , and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the Hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the Hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear Enhancement. J. Atmos. Sci., 58, 24852501.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209.

    • Search Google Scholar
    • Export Citation
  • Lee, X., 1996: Turbulence spectra and eddy diffusivity over forests. J. Appl. Meteor., 35, 13071318.

  • Lenschow, D. H., Ed., 1986: Aircraft measurements in the boundary layer. Probing the Atmospheric Boundary Layer, Amer. Meteor. Soc., 39–55.

    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., , J. A. Zhang, , F. D. Marks, , and J. Gamache, 2010: Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon. Wea. Rev., 138, 36563670.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Flux sampling errors from aircraft and towers. J. Atmos. Oceanic Technol., 15, 416429.

  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425.

    • Search Google Scholar
    • Export Citation
  • Mann, J., , and D. H. Lenschow, 1994: Errors in airborne flux measurements. J. Geophys. Res., 99, 14 51914 526.

  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930.

  • Marks, F. D., , P. G. Black, , M. T. Montgomery, , and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , V. A. Vladimirov, , and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. M. Bell, , S. Aberson, , and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimate. Bull. Amer. Meteor. Soc., 87, 13351347.

    • Search Google Scholar
    • Export Citation
  • Moss, M. S., 1978: Low-level turbulence structure in the vicinity of a hurricane. Mon. Wea. Rev., 106, 841849.

  • Moss, M. S., , and F. J. Merceret, 1976: A note on several low-layer features of Hurricane Eloise (1975). Mon. Wea. Rev., 104, 967971.

  • Moss, M. S., , and F. J. Merceret, 1977: A comparison of velocity spectra from hot film anemometer and gust-probe measurements. J. Appl. Meteor., 16, 319320.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci., 41, 22022216.

  • Nolan, D. S., , J. A. Zhang, , and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer-core boundary layer structure. Mon. Wea. Rev., 137, 36513674.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , J. A. Zhang, , and D. P. Stern, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Powell, M. D., , P. J. Vickery, , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , Y. Chen, , W. Wang, , C. Davis, , J. Dudhia, , and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., , and J. D. Kepert, 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1968: The surface layer of a hurricane. Tellus, 20, 473484.

  • Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 129, 10071027.

  • Smith, R. K., , and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670.

  • Smith, R. K., , and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784.

  • Sreenivasan, K. R., , A. J. Chambers, , and R. A. Antonia, 1978: Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer. Bound.-Layer Meteor., 14, 341359.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , P. G. Black, , J. L. Franklin, , M. Goodberlet, , J. Carswell, , and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265274.

  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1986: Measurements physics. Probing the Atmospheric Boundary Layer, D. H. Lenschow, Ed., Amer. Meteor. Soc., 5–18.

  • Yau, M. K., , Y. Liu, , D.-L. Zhang, , and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 14101433.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Spectral characteristics of turbulence in the hurricane boundary layer over the ocean between the outer rainbands. Quart. J. Roy. Meteor. Soc., 136, 918926.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , P. G. Black, , J. R. French, , and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: the CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , W. M. Drennan, , P. G. Black, , and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 7
PDF Downloads 64 64 6

An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989)

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML Hurricane Research Division, Miami, Florida
  • | 2 NOAA/AOML Hurricane Research Division, Miami, Florida
  • | 3 Naval Postgraduate School, Monterey, California, and NOAA/AOML Hurricane Research Division, Miami, Florida
  • | 4 Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of category 5 Hurricane Hugo (1989) and category 4 Hurricane Allen (1980) between 1 km and the sea surface. Estimates of turbulent momentum flux, turbulent kinetic energy (TKE), and vertical eddy diffusivity are obtained before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through a spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of the dominant turbulent eddies is found to be between 500 and 3000 m, and the corresponding vertical length scale is approximately 100 m. The results suggest also that it is unwise to include eyewall vorticity maxima (EVM) in the turbulence parameter estimation because the EVMs are likely to be quasi-two-dimensional vortex structures that are embedded within the three-dimensional turbulence on the inside edge of the eyewall.

This study is a first attempt at estimating the characteristics of turbulent flow in the low-level troposphere of an intense eyewall using in situ aircraft observations. The authors believe that the results can offer useful guidance in numerical weather prediction efforts aimed at improving the forecast of hurricane intensity. Because of the small sample size analyzed in this study, further analyses of the turbulent characteristics in the high-wind region of hurricanes are imperative.

Corresponding author address: Jun Zhang, University of Miami/CIMAS, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: jun.zhang@noaa.gov

Abstract

This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of category 5 Hurricane Hugo (1989) and category 4 Hurricane Allen (1980) between 1 km and the sea surface. Estimates of turbulent momentum flux, turbulent kinetic energy (TKE), and vertical eddy diffusivity are obtained before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through a spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of the dominant turbulent eddies is found to be between 500 and 3000 m, and the corresponding vertical length scale is approximately 100 m. The results suggest also that it is unwise to include eyewall vorticity maxima (EVM) in the turbulence parameter estimation because the EVMs are likely to be quasi-two-dimensional vortex structures that are embedded within the three-dimensional turbulence on the inside edge of the eyewall.

This study is a first attempt at estimating the characteristics of turbulent flow in the low-level troposphere of an intense eyewall using in situ aircraft observations. The authors believe that the results can offer useful guidance in numerical weather prediction efforts aimed at improving the forecast of hurricane intensity. Because of the small sample size analyzed in this study, further analyses of the turbulent characteristics in the high-wind region of hurricanes are imperative.

Corresponding author address: Jun Zhang, University of Miami/CIMAS, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: jun.zhang@noaa.gov
Save