• Atkins, N. T., , and M. St. Laurent, 2009: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and R. A. Houze Jr., 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121, 5577.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and M. L. Weisman, 2006: Mechanisms for the production of severe surface winds in a simulation of an elevated convective system. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 7.5. [Available online at http://ams.confex.com/ams/pdfpapers/115224.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., , M. C. Coniglio, , S. F. Corfidi, , and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062.

    • Search Google Scholar
    • Export Citation
  • Eilts, M. D., , and R. J. Doviak, 1987: Oklahoma downbursts and their asymmetry. J. Climate Appl. Meteor., 26, 6978.

  • Evans, J. S., , and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342.

    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., , and R. M. Wakimoto, 1983: A concentrated outbreak of tornadoes, downbursts and microbursts, and implications regarding vortex classification. Mon. Wea. Rev., 111, 220236.

    • Search Google Scholar
    • Export Citation
  • Foster, D. S., 1958: Thunderstorm gusts compared with computed downdraft speeds. Mon. Wea. Rev., 86, 9194.

  • Fovell, R. G., , and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1978: Manual of downburst identification for Project NIMROD. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., , and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon. Wea. Rev., 109, 14381456.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., , and M. Pfeifer, 2008: Intercomparison of simulations using five WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16, 109116.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 2001: Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia. Wea. Forecasting, 16, 261269.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Grim, J. A., , G. M. McFarquhar, , R. M. Rauber, , A. M. Smith, , and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., , and M. W. Moncrieff, 2000: Parameterization of convective momentum transport in highly baroclinic conditions. J. Atmos. Sci., 57, 30353049.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, 10.1029/2004RG000150.

  • Houze, R. A., Jr., , B. F. Smull, , and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • James, R. P., , and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161.

    • Search Google Scholar
    • Export Citation
  • James, R. P., , P. M. Markowski, , and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., , and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249.

  • Johns, R. H., , and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612.

  • Johnson, R. H., , and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 14441473.

    • Search Google Scholar
    • Export Citation
  • Kuchera, E. L., , and M. D. Parker, 2006: Severe convective wind environments. Wea. Forecasting, 21, 595612.

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834.

  • Mahoney, K. M., 2009: Momentum transport in mesoscale convective systems. Ph.D. dissertation, North Carolina State University, 280 pp. [Available online at http://www.ncsu.edu/grad/etd/.]

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., , G. M. Lackmann, , and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 33163338.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , S. S. Chen, , and R. A. Houze Jr., 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709736.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1950: Structure and mechanisms of the prefrontal squall line. J. Meteor., 7, 210222.

  • Orf, L. G., , and J. R. Anderson, 1999: A numerical study of traveling microbursts. Mon. Wea. Rev., 127, 12441258.

  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341.

  • Parker, M. D., , and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Rutledge, S. A., , R. A. Houze, , M. I. Biggerstaff, , and T. Matejka, 1988: The Oklahoma–Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev., 116, 14091430.

    • Search Google Scholar
    • Export Citation
  • Smith, A. M., , G. M. McFarquhar, , R. M. Rauber, , J. A. Grim, , M. S. Timlin, , B. F. Jewett, , and D. P. Jorgensen, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185.

    • Search Google Scholar
    • Export Citation
  • Torres Brizuela, M., , and M. Nicolini, 2008: Sensitivity of main downdraft features to vertical wind shear and ice-phase in a microburst-producing thunderstorm. Atmósfera, 21, 5782.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823.

    • Search Google Scholar
    • Export Citation
  • Vescio, M. D., , and R. H. Johnson, 1992: The surface-wind response to transient mesoscale pressure fields associated with squall lines. Mon. Wea. Rev., 120, 18371850.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 255–298.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , H. V. Murphey, , C. A. Davis, , and N. T. Atkins, 2006: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670.

  • Weisman, M. L., , and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., , R. J. Trapp, , and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., , and R. A. Houze Jr., 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 31753193.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 2
PDF Downloads 17 17 0

The Sensitivity of Momentum Transport and Severe Surface Winds to Environmental Moisture in Idealized Simulations of a Mesoscale Convective System

View More View Less
  • 1 UCAR Visiting Scientist Program, NOAA/USBR, Boulder, Colorado
  • | 2 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

Analysis of a pair of three-dimensional simulations of mesoscale convective systems (MCSs) reveals a significant sensitivity of convective momentum transport (CMT), MCS motion, and the generation of severe surface winds to ambient moisture. The Weather Research and Forecasting model is used to simulate an idealized MCS, which is compared with an MCS in a drier midlevel environment. The MCS in the drier environment is smaller, moves slightly faster, and exhibits increased descent and more strongly focused areas of enhanced CMT near the surface in the trailing stratiform region relative to that in the control simulation.

A marked increase in the occurrence of severe surface winds is observed between the dry midlevel simulation and the control. It is shown that the enhanced downward motion associated with decreased midlevel relative humidity affects CMT fields and contributes to an increase in the number of grid-cell occurrences of severe surface winds. The role of a descending rear-inflow jet in producing strong surface winds at locations trailing the gust front is also analyzed, and is found to be associated with low-level CMT maxima, particularly in the drier midlevel simulation.

Corresponding author address: Kelly Mahoney, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. E-mail: kelly.mahoney@noaa.gov

Abstract

Analysis of a pair of three-dimensional simulations of mesoscale convective systems (MCSs) reveals a significant sensitivity of convective momentum transport (CMT), MCS motion, and the generation of severe surface winds to ambient moisture. The Weather Research and Forecasting model is used to simulate an idealized MCS, which is compared with an MCS in a drier midlevel environment. The MCS in the drier environment is smaller, moves slightly faster, and exhibits increased descent and more strongly focused areas of enhanced CMT near the surface in the trailing stratiform region relative to that in the control simulation.

A marked increase in the occurrence of severe surface winds is observed between the dry midlevel simulation and the control. It is shown that the enhanced downward motion associated with decreased midlevel relative humidity affects CMT fields and contributes to an increase in the number of grid-cell occurrences of severe surface winds. The role of a descending rear-inflow jet in producing strong surface winds at locations trailing the gust front is also analyzed, and is found to be associated with low-level CMT maxima, particularly in the drier midlevel simulation.

Corresponding author address: Kelly Mahoney, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. E-mail: kelly.mahoney@noaa.gov
Save