• Anderson, R. B., , H. Kroninger, , H. R. Niekerk, , and D. W. Meal, 1984: Development and field evaluation of a lightning earth-flash counter. IEE Proc., 131A, 118124.

    • Search Google Scholar
    • Export Citation
  • Antonescu, B., , and S. Burcea, 2010: A cloud-to-ground lightning climatology for Romania. Mon. Wea. Rev., 138, 579591.

  • Anttila, P., , and T. Salmi, 2006: Characterizing temporal and spatial patterns of urban PM10 using six years of Finnish monitoring data. Boreal Environ. Res., 11, 463479.

    • Search Google Scholar
    • Export Citation
  • Areitio, J., , A. Ezcurra, , and I. Herrero, 2001: Cloud-to-ground lightning characteristics in the Spanish Basque Country area during the period 1992–1996. J. Atmos. Sol.-Terr. Phys., 63, 10051015.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., , K. L. Cummins, , K. E. Kehoe, , and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., , K. L. Cummins, , H. J. Christian, , and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. R. Braham, 1949: The Thunderstorm. U.S. Department of Commerce, 287 pp.

  • Christian, H. J., , R. J. Blakeslee, , and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , M. J. Murphy, , E. A. Bardo, , W. L. Hiscox, , R. B. Pyle, , and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, , H. E. Brooks, , and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563.

    • Search Google Scholar
    • Export Citation
  • Enno, S.-E., 2010: A climatology of cloud-to-ground lightning over Estonia, 2005–2009. Atmos. Res., in press, doi:10.1016/j.atmosres.2010.08.024.

    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., 1949: The audibility of thunder. J. Acoust. Soc. Amer., 21, 411412.

  • Fritsch, J. M., , and G. S. Forbes, 2001: Severe Convective Storms. Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

  • Galway, J. G., 1989: The evolution of severe thunderstorm criteria within the Weather Service. Wea. Forecasting, 4, 585592.

  • Hodanish, S., , D. Sharp, , W. Collins, , C. Paxton, , and R. E. Orville, 1997: A 10-yr monthly lightning climatology of Florida: 1986–95. Wea. Forecasting, 12, 439448.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Huffines, G. R., , and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38, 10131019.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., , Y. A. Liou, , and K. J. Ha, 2007: Characteristics of cloud-to-ground lightning activity over Seoul, South Korea, in relation to an urban effect. Ann. Geophys., 25, 21132118.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., , Y.-A. Liou, , and K.-J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 8087.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., , and E. R. Jayaratne, 2004: Estimates of lightning ground flash density in Australia and its relationship to thunder-days. Aust. Meteor. Mag., 53, 189196.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., , M. W. Maier, , and W. D. Rust, 1984: Lightning strike density for the contiguous United States from thunderstorm duration records. Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Rep. NUREG/CR-3759, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Mäkelä, A., , and T. J. Tuomi, 2009: Lightning observations in Finland, 2009. Reports of Finnish Meteorological Institute, Rep. 2009:5, 64 pp. [Available from http://helda.helsinki.fi/bitstream/handle/10138/14831/2009nro5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Mäkelä, A., , T. J. Tuomi, , and J. Haapalainen, 2010: A decade of high-latitude lightning location: Effects of the evolving location network in Finland. J. Geophys. Res., 115, D21124, doi:10.1029/2009JD012183.

    • Search Google Scholar
    • Export Citation
  • Naccarato, K. P., , O. Pinto Jr., , and I. R. C. A. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of southeastern Brazil. Geophys. Res. Lett., 30, 1674, doi:10.1029/2003GL017496.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1991: Lightning ground flash density in the contiguous United States—1989. Mon. Wea. Rev., 119, 573577.

  • Orville, R. E., 1994: Cloud-to-ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99, 10 83310 841.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190.

  • Orville, R. E., , and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127, 26932703.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , R. W. Henderson, , and L. F. Bosart, 1983: An East Coast lightning detection network. Bull. Amer. Meteor. Soc., 64, 10291030.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , G. R. Huffines, , W. R. Burrows, , R. L. Holle, , and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109.

    • Search Google Scholar
    • Export Citation
  • Peckham, D. W., , M. A. Uman, , and C. E. Wilcox Jr., 1984: Lightning phenomenology in the Tampa Bay area. J. Geophys. Res., 89, 789805.

  • Pinto, O., Jr., , I. R. C. A. Pinto, , M. A. S. S. Gomes, , I. Vitorello, , A. L. Padilha, , J. H. Diniz, , A. M. Carvalho, , and A. C. Filho, 1999: Cloud-to-ground lightning in southeastern Brazil in 1993. 1. Geographical distribution. J. Geophys. Res., 104, 31 36931 379.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., , I. R. C. A. Pinto, , J. H. Diniz, , A. C. Filho, , L. C. L. Cherchiglia, , and A. M. Carvalho, 2003: A seven-year study about the negative cloud-to-ground lightning flash characteristics in southeastern Brazil. J. Atmos. Sol.-Terr. Phys., 65, 739748.

    • Search Google Scholar
    • Export Citation
  • Prentice, S. A., 1972: CIGRE lightning flash counter. Electra, 22, 149171.

  • Rakov, V. A., , and M. A. Uman, 2003: Lightning Physics and Effects. Cambridge University Press, 850 pp.

  • Rodger, C. J., , S. Werner, , J. B. Brundell, , E. H. Lay, , N. R. Thomson, , R. H. Holzworth, , and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., , and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633.

    • Search Google Scholar
    • Export Citation
  • Samet, J., , F. Dominici, , F. Curriero, , I. Coursac, , and S. Zeger, 2000: Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N. Engl. J. Med., 343, 17431749.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., , K. Cummins, , G. Diendorfer, , and M. Dorninger, 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., , S. Soula, , and H. Sauvageot, 2001: Lightning and precipitation relationship in coastal thunderstorms. J. Geophys. Res., 106, 22 80122 816.

    • Search Google Scholar
    • Export Citation
  • Soriano, L. R., , and F. de Pablo, 2002: Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ., 36, 28092816.

    • Search Google Scholar
    • Export Citation
  • Soriano, L. R., , F. de Pablo, , and C. Tomas, 2005: Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J. Atmos. Sol.-Terr. Phys., 67, 16321639.

    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., , C. A. Doswell III, , and G. J. Stumpf, 2002: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting, 17, 362381.

    • Search Google Scholar
    • Export Citation
  • Stallins, J. A., , M. L. Bentley, , and L. S. Rose, 2006: Cloud-to-ground flash patterns for Atlanta, Georgia (USA) from 1992 to 2003. Climate Res., 30, 99112.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., , and R. E. Orville, 2003: Cloud-to-ground lightning enhancement over southern Louisiana. Geophys. Res. Lett., 30, 1975, doi:10.1029/2003GL017923.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., , R. E. Orville, , and G. Huffines, 2002: Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res., 107, 4117, doi:10.1029/2001JD001142.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., , A. Rodriguez, , S. Tjemkes, , J. Grandell, , A. Arriaga, , J. Bézy, , D. Aminou, , and P. Bensi, 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme. Adv. Space Res., 36, 975981.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , D. M. Wheatley, , N. T. Atkins, , R. W. Przybylinski, , and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415.

    • Search Google Scholar
    • Export Citation
  • Tuomi, T. J., , and A. Mäkelä, 2008: Thunderstorm climate of Finland 1998–2007. Geophysica, 44, 18.

  • Tuovinen, J.-P., , A.-J. Punkka, , J. Rauhala, , H. Hohti, , and D. M. Schultz, 2009: Climatology of severe hail in Finland: 1930–2006. Mon. Wea. Rev., 137, 22382249.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J. Appl. Meteor., 34, 16331642.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2001: The electrification of convective storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., , and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , D. J. Cecil, , C. Liu, , S. W. Nesbitt, , and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 21
PDF Downloads 80 80 16

The Daily Cloud-to-Ground Lightning Flash Density in the Contiguous United States and Finland

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, Finland
  • | 2 Division of Atmospheric Sciences, Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
© Get Permissions
Restricted access

Abstract

A method is developed to quantify thunderstorm intensity according to cloud-to-ground lightning flashes (hereafter ground flashes) determined by a lightning-location sensor network. The method is based on the ground flash density ND per thunderstorm day (ground flashes per square kilometer per thunderstorm day) calculated on 20 km × 20 km fixed squares. Because the square size roughly corresponds to the area covered by a typical thunderstorm, the flash density for one square defines a unit thunderstorm for the purposes of this study. This method is tested with ground flash data obtained from two nationwide lightning-location systems: the National Lightning Detection Network (NLDN) in the contiguous United States and the portion of the Nordic Lightning Information System (NORDLIS) in Finland. The distribution of daily ground flash density ND is computed for all of Finland and four 800 000 km2 regions in the United States (identified as western, central, eastern, and Florida). Although Finland and all four U.S. regions have median values of ND of 0.01–0.03 flashes per square kilometer per thunderstorm day—indicating that most thunderstorms produce relatively few ground flashes regardless of geographical region—the most intense 1% of the storms (as measured by the 99th percentiles of the ND distributions within each region) show much larger differences among regions. For example, the most intense 1% of the ND distributions is 1.3 flashes per square kilometer per thunderstorm day in the central U.S. region, but only 0.2 flashes per square kilometer per thunderstorm day in Finland. The spatial distribution of the most intense 1% of the ND distributions illustrates that the most intense thunderstorm days occur in the central United States and upper Midwest, which differs from the maxima of the average annual flash density NA and the number of thunderstorm days TD, both of which occur in Florida and along the coast of the Gulf of Mexico. This method for using ND to quantify thunderstorm intensity is applicable to any region as long as the detection efficiency of the lightning-location network is high enough or known. This method can also be employed in operational forecasting to provide a quantitative measure of the lightning intensity of thunderstorms relative to climatology.

Corresponding author address: Antti Mäkelä, Finnish Meteorological Institute, P.O. Box 503, FIN-00101, Helsinki, Finland. E-mail: antti.makela@fmi.fi

Abstract

A method is developed to quantify thunderstorm intensity according to cloud-to-ground lightning flashes (hereafter ground flashes) determined by a lightning-location sensor network. The method is based on the ground flash density ND per thunderstorm day (ground flashes per square kilometer per thunderstorm day) calculated on 20 km × 20 km fixed squares. Because the square size roughly corresponds to the area covered by a typical thunderstorm, the flash density for one square defines a unit thunderstorm for the purposes of this study. This method is tested with ground flash data obtained from two nationwide lightning-location systems: the National Lightning Detection Network (NLDN) in the contiguous United States and the portion of the Nordic Lightning Information System (NORDLIS) in Finland. The distribution of daily ground flash density ND is computed for all of Finland and four 800 000 km2 regions in the United States (identified as western, central, eastern, and Florida). Although Finland and all four U.S. regions have median values of ND of 0.01–0.03 flashes per square kilometer per thunderstorm day—indicating that most thunderstorms produce relatively few ground flashes regardless of geographical region—the most intense 1% of the storms (as measured by the 99th percentiles of the ND distributions within each region) show much larger differences among regions. For example, the most intense 1% of the ND distributions is 1.3 flashes per square kilometer per thunderstorm day in the central U.S. region, but only 0.2 flashes per square kilometer per thunderstorm day in Finland. The spatial distribution of the most intense 1% of the ND distributions illustrates that the most intense thunderstorm days occur in the central United States and upper Midwest, which differs from the maxima of the average annual flash density NA and the number of thunderstorm days TD, both of which occur in Florida and along the coast of the Gulf of Mexico. This method for using ND to quantify thunderstorm intensity is applicable to any region as long as the detection efficiency of the lightning-location network is high enough or known. This method can also be employed in operational forecasting to provide a quantitative measure of the lightning intensity of thunderstorms relative to climatology.

Corresponding author address: Antti Mäkelä, Finnish Meteorological Institute, P.O. Box 503, FIN-00101, Helsinki, Finland. E-mail: antti.makela@fmi.fi
Save