• Berg, L. K., , and S. Zhong, 2005: Sensitivity of MM5-simulated boundary layer characteristics to turbulence parameterizations. J. Appl. Meteor., 44, 14671483.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1978: Modeling pollutant transfer during daytime convection. Preprints, Fourth Symp. on Atmospheric Turbulence, Diffusion, and Air Quality, Reno, NV, Amer. Meteor. Soc., 443–447.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Ecological Climatology: Concepts and Applications. 2nd ed. Cambridge University Press, 568 pp.

  • Brehm, M., 1986: Experimental and numerical investigations of the slope wind layer and its role in the warming of valleys. Ph.D. thesis, Meteorologisches Institut, Universität München, Wiss. Mitt. 54, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, C., , and W. R. Cotton, 1983: A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor., 25, 289321.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., , A. P. Weigel, , R. L. Street, , M. W. Rotach, , and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Davies, T., , M. J. P. Cullen, , A. J. Malcolm, , M. H. Mawson, , A. Staniforth, , A. A. White, , and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., , D. G. Steyn, , J. D. Fast, , M. W. Rotach, , and S. Zhong, 2005: The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ. Fluid Mech., 5, 3562.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Doms, G., and Coauthors, 2007: A description of the nonhydrostatic regional model LM: Part II: Physical parameterization. Tech. Rep., DWD, 146 pp.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., , J. D. Fast, , and J. Horel, 2002: The VTMX 2000 campaign. Bound.-Layer Meteor., 83, 537551.

  • Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901914.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor. Soc., 43–58.

    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., 1968: Vertical mixing due to penetrative convection. J. Atmos. Sci., 25, 10461051.

  • Grubisic, V., and Coauthors, 2008: The Terrain-induced Rotor Experiment: An overview of the field campaign and some highlights of special observations. Bull. Amer. Meteor. Soc., 89, 15131533.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., , and J. C. Labraga, 1988: Design of a nonsingular level-2.5 second-order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci., 45, 113132.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., , D. Niyogi, , F. Chen, , K. Manning, , M. A. LeMone, , and A. Quereshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., , J. W. Nielson-Gammon, , and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844.

    • Search Google Scholar
    • Export Citation
  • Li, J. G., , and B. W. Atkinson, 1999: Transition regimes in valley airflows. Bound.-Layer Meteor., 91, 385411.

  • Lock, A. P., , A. R. Brown, , M. R. Bush, , G. M. Martin, , and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , and R. D. O’Neil, 1989: The role of valley geometry and energy budget in the formation of nocturnal valley winds. J. Appl. Meteor., 28, 445456.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., , P. K. Smolarkiewicz, , and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207.

    • Search Google Scholar
    • Export Citation
  • Rampanelli, G., , D. Zardi, , and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61, 30973111.

  • Rotach, M. W., and Coauthors, 2004: Turbulence structure and exchange processes in an alpine valley: The Riviera project. Bull. Amer. Meteor. Soc., 85, 13671385.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., , M. Andretta, , P. Calanca, , A. P. Weigel, , and A. Weiss, 2008: Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys., 56, 194219.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., , and R. Rotunno, 2010: Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci., 67, 30333047.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2, 269290.

  • Sellers, P. J., and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res., 102 (D24), 28 73128 769.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area-height distribution of a valley and its relation to the valley wind. Contrib. Atmos. Phys., 57, 6471.

  • Steppeler, J., , G. Doms, , U. Schättler, , H. Bitzer, , A. Gassmann, , U. Damrath, , and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., , and C.-Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25, 14451453.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., , and S. D. Burk, 1991: An investigation of an Arctic front with a vertically nested mesoscale model. Mon. Wea. Rev., 119, 233261.

    • Search Google Scholar
    • Export Citation
  • Thunis, P., and Coauthors, 2003: An inter-comparison exercise of mesoscale flow models applied to an ideal case simulation. Atmos. Environ., 37, 363382.

    • Search Google Scholar
    • Export Citation
  • Troen, I., , and L. Mahrt, 1986: A simple model of the atmospheric boundary layer – sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148.

    • Search Google Scholar
    • Export Citation
  • Wagner, A., 1938: Theory and observations of periodic mountain winds. Gerlands Beitr. Geophys., 52, 408449.

  • Weigel, A. P., , F. K. Chow, , M. W. Rotach, , R. L. Street, , and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45, 87107.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., , F. K. Chow, , and M. W. Rotach, 2007: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meteor., 123, 177199, doi:10.1007/s10546-006-9142-9.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor. Soc., 5–42.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Xue, M., , K. K. Droegemeier, , and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon. Wea. Rev., 130, 14231432.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., , A. Gohm, , and F. Obleitner, 2008: The impact of the PBL scheme and the vertical distribution of model layers on simulations of Alpine foehn. Meteor. Atmos. Phys., 99, 105128.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., , and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparison with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., , and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169.

    • Search Google Scholar
    • Export Citation
  • Zhong, S. Y., , and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 13011322.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 5
PDF Downloads 57 57 4

Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado, and Institute for Atmospheric and Climate Science, ETH, Zurich, Switzerland
  • | 2 Desert Research Institute, Reno, Nevada, and Naval Research Laboratory, Monterey, California
  • | 3 University of California, Berkeley, Berkeley, California
  • | 4 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
  • | 5 Naval Research Laboratory, Monterey, California
  • | 6 Desert Research Institute, Reno, Nevada, and Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
  • | 7 Met Office, Exeter, United Kingdom
  • | 8 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 9 National Center for Atmospheric Research, Boulder, Colorado
  • | 10 Deutscher Wetterdienst, Offenbach, Germany
© Get Permissions
Restricted access

Abstract

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.

Corresponding author address: Juerg Schmidli, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. E-mail: jschmidli@env.ethz.ch

This article is included in the Terrain-Induced Rotor Experiment (T-Rex) special collection.

Abstract

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.

Corresponding author address: Juerg Schmidli, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. E-mail: jschmidli@env.ethz.ch

This article is included in the Terrain-Induced Rotor Experiment (T-Rex) special collection.

Save