• Black, R. A., , and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028.

  • Carey, L. D., , and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 (D12), 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and R. T. DeMaria, 2009: Applications of lightning observations to tropical cyclone intensity forecasting. Preprints, 16th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., 1.3. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_145745.htm.]

    • Search Google Scholar
    • Export Citation
  • Eack, K. B., 2004: Electrical characteristics of narrow bipolar events. Geophys. Res. Lett., 31, L20102, doi:10.1029/2004GL021117.

  • Fierro, A. O., , and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , L. M. Leslie, , E. R. Mansell, , J. M. Straka, , D. R. MacGorman, , and C. Ziegler, 2007: A high resolution simulation of the microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 1333, doi:10.1007/s00703-006-0237-0.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., , G. M. Heymsfield, , and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654.

    • Search Google Scholar
    • Export Citation
  • Hamlin, T., , and J. Harlin, 2002: Tornado signatures and precursor activity from 3-D lightning mapping observations. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 11A.5. [Available online at http://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47438.htm.]

    • Search Google Scholar
    • Export Citation
  • Hamlin, T., , T. E. Light, , X. M. Shao, , K. B. Eack, , and J. D. Harlin, 2007: Estimating lightning channel characteristics of positive narrow bipolar events using intra-channel current reflection signatures. J. Geophys. Res., 112, D14108, doi:10.1029/2007JD008471.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344.

  • Jacobson, A. R., , and M. J. Heavner, 2005: Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection. Mon. Wea. Rev., 133, 11441154.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , R. Holzworth, , J. Harlin, , R. Dowden, , and E. Lay, 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN) using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. F., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681286.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , M. DeMaria, , and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., , D. P. Brown, , and J. R. Rhome, 2005: Tropical cyclone report: Hurricane Rita, 18–26 September 2005. Tech. Rep., NOAA/National Hurricane Center, 33 pp. [Available online at http://www.nhc.noaa.gov/2005atlan.shtml.]

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.

  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., , A. R. Jacobson, , R. H. Holzworth, , C. J. Rodger, , and R. L. Dowden, 2007: Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., 1980: Source of the strongest RF radiation from lightning. J. Geophys. Res., 85, 40914095.

  • MacGorman, D. R., , D. W. Burgess, , V. Mazur, , W. D. Rust, , W. L. Taylor, , and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251.

    • Search Google Scholar
    • Export Citation
  • Marks, F., , and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2008: Extreme helicity and intense convective towers in Hurricane Bonnie. Mon. Wea. Rev., 136, 43554372.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2010: Rapid intensification of sheared tropical storm. Mon. Wea. Rev., 138, 38693885.

  • Molinari, J., , P. K. Moore, , V. P. Idone, , R. W. Henderson, , and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Moore, , and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1994: An update to the National Hurricane Center “Track Book.”. Minutes of the 48th Interdepartmental Conference, NOAA/Office of Federal Coordinator for Meteorological Services and Supporting Research, Miami, FL, A-47–A-53.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , R. C. Cifelli, , S. A. Rutledge, , B. S. Ferrier, , and B. F. Smull, 1999: Shipborne dual-Doppler operations and observations during TOGA COARE. Bull. Amer. Meteor. Soc., 80, 8197.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938.

    • Search Google Scholar
    • Export Citation
  • Price, C., , M. Asfur, , and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, doi:10.1038/NGEO477.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., , and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518535.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rison, W., , R. J. Thomas, , P. R. Krehbiel, , T. Hamlin, , and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , W. S. Olson, , V. M. Karyampudi, , and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Chen, , J. Tenerelli, , and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., , and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 (D12), 13 94913 956.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., , and A. R. Jacobson, 2009: Model simulation of very low-frequency and low-frequency lightning signal propagation over intermediate ranges. IEEE Trans. EMC, 51, 519525.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, doi:10.1029/2005EO420004.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., , M. Stanley, , A. Regan, , J. Harlin, , M. Pongratz, , and M. Stock, 2006: Total lightning observations with the new and improved Los Alamos Sferic Array (LASA). J. Atmos. Oceanic Technol., 23, 12731288.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , J. B. Halverson, , B. S. Ferrier, , W. A. Petersen, , R. H. Simpson, , R. Blakeslee, , and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., and Coauthors, 1999: A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res., 104, 41894212.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., , M. J. Heavner, , A. R. Jacobson, , X. M. Shao, , R. S. Massey, , R. J. Sheldon, , and K. C. Wiens, 2004: A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci., 39, RS1010, doi:10.1029/2002RS002790.

    • Search Google Scholar
    • Export Citation
  • Solorzano, N. N., , J. N. Thomas, , and R. H. Holzworth, 2008: Global studies of tropical cyclones using the World Wide Lightning Location Network. Preprints, Third Conf. on the Meteorological Applications of Lightning Data, New Orleans, LA, Amer. Meteor. Soc., 1.4. [Available online at http://wwlln.net/publications/Solorzano_AMS_29FEB2008.pdf.]

    • Search Google Scholar
    • Export Citation
  • Squires, K., , and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Thomas, J. N., , N. Solorzano, , S. A. Cummer, , and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, doi:10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Uman, M. A., 1987: The Lightning Discharge. Academic Press, 377 pp.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Wiens, K. C., , S. A. Rutledge, , and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Willett, J. C., , J. C. Bailey, , and E. P. Krider, 1989: A class of unusual lightning electric field waveforms with very strong high-frequency radiation. J. Geophys. Res., 94, 16 25516 267.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167.

  • Williams, E. R., 1995: Meteorological aspects of thunderstorms. Handbook of Atmospheric Electrodynamics, H. Volland, Ed., Vol. 1, CRC Press, 27–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 23
PDF Downloads 51 51 14

Evolution of Eyewall Convective Events as Indicated by Intracloud and Cloud-to-Ground Lightning Activity during the Rapid Intensification of Hurricanes Rita and Katrina

View More View Less
  • 1 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 2 Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 3 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 4 Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, New Mexico
© Get Permissions
Restricted access

Abstract

Lightning data (cloud-to-ground plus intracloud) obtained from the Los Alamos Sferic Array (LASA) for 2005’s Hurricanes Rita and Katrina were analyzed to provide a first insight into the three-dimensional electrical activity of rapidly intensifying hurricanes. This information is crucial for modelers aiming at better forecasting hurricane intensity, because it is inherently related to key structural aspects of the storm often misrepresented in numerical models. Analysis of the intracloud narrow bipolar events (NBEs) for Rita revealed a general increase in discharge heights during the period of rapid intensification. The results also showed that for the case of Rita, NBEs were useful in tracking and mapping the evolution of individual strong convective elements embedded in the eyewall during rapid intensification. Those results are particularly revealing, and suggest that the general increase in height of the intracloud lightning is an aggregate consequence of numerous short-lived convective events rotating rapidly around the eyewall of Rita. A similar rise in discharge heights during periods of intensification was also observed for Katrina. However, the NBE lightning data show that for Katrina, the eyewall convection persisted for several hours at a fixed location instead of rotating cyclonically along the eyewall. This highlights the idea that NBE lightning data can also be used to identify different convective regimes attributed to possibly different internal or external forcing mechanism(s).

Corresponding author address: Alexandre O. Fierro, Cooperative Institute for Mesoscale Meteorological Studies, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: afierro@ou.edu

Abstract

Lightning data (cloud-to-ground plus intracloud) obtained from the Los Alamos Sferic Array (LASA) for 2005’s Hurricanes Rita and Katrina were analyzed to provide a first insight into the three-dimensional electrical activity of rapidly intensifying hurricanes. This information is crucial for modelers aiming at better forecasting hurricane intensity, because it is inherently related to key structural aspects of the storm often misrepresented in numerical models. Analysis of the intracloud narrow bipolar events (NBEs) for Rita revealed a general increase in discharge heights during the period of rapid intensification. The results also showed that for the case of Rita, NBEs were useful in tracking and mapping the evolution of individual strong convective elements embedded in the eyewall during rapid intensification. Those results are particularly revealing, and suggest that the general increase in height of the intracloud lightning is an aggregate consequence of numerous short-lived convective events rotating rapidly around the eyewall of Rita. A similar rise in discharge heights during periods of intensification was also observed for Katrina. However, the NBE lightning data show that for Katrina, the eyewall convection persisted for several hours at a fixed location instead of rotating cyclonically along the eyewall. This highlights the idea that NBE lightning data can also be used to identify different convective regimes attributed to possibly different internal or external forcing mechanism(s).

Corresponding author address: Alexandre O. Fierro, Cooperative Institute for Mesoscale Meteorological Studies, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: afierro@ou.edu
Save