Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

Adam J. Clark NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
,
John S. Kain NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by John S. Kain in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
Fanyou Kong Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Fanyou Kong in
Current site
Google Scholar
PubMed
Close
,
Michael C. Coniglio NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael C. Coniglio in
Current site
Google Scholar
PubMed
Close
,
Kevin W. Thomas Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kevin W. Thomas in
Current site
Google Scholar
PubMed
Close
,
Yunheng Wang Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yunheng Wang in
Current site
Google Scholar
PubMed
Close
,
Keith Brewster Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Keith Brewster in
Current site
Google Scholar
PubMed
Close
,
Jidong Gao Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jidong Gao in
Current site
Google Scholar
PubMed
Close
,
Xuguang Wang Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
,
Steven J. Weiss NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma

Search for other papers by Steven J. Weiss in
Current site
Google Scholar
PubMed
Close
, and
Jun Du NOAA/NWS/NCEP Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Jun Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km.

Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: adam.clark@noaa.gov

Abstract

Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km.

Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: adam.clark@noaa.gov
Save
  • Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918–932.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and K. E. Mitchell, 1997: The NCEP hourly multisensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., A. Hollingsworth, F. Lalaurette, and A. Ghelli, 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14, 168–189.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99–118.

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 1121–1140.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) Model. Atmos. Sci. Lett., 5, 110–117.

    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427–2459.

    • Search Google Scholar
    • Export Citation
  • Du, J., J. McQueen, G. DiMego, Z. Toth, D. Jovic, B. Zhou, and H. Chuang, 2006: New dimension of NCEP Short-Range Ensemble Forecasting (SREF) system: Inclusion of WRF members. Preprints, WMO Expert Team Meeting on Ensemble Prediction System, Exeter, United Kingdom, WMO, 5 pp. [Available online at http://www.emc.ncep.noaa.gov/mmb/SREF/WMO06_full.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 1498–1510.

  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328–350.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475–1488.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and rainfall scheme in the NCEP Eta Model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955–965.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167.

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550–560.

  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 1312–1327.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711–724.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3D-VAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Mesomodel. NCEP Office Note 437, NOAA/NWS, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271–285.

  • Jenkner, J., C. Frei, and C. Schwierz, 2008: Quantile-based short-range QPF evaluation over Switzerland. Meteor. Z., 17, 827–848.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 1797–1806.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, M. E. Baldwin, G. W. Carbin, D. A. Bright, J. J. Levit, and J. A. Hart, 2005: Evaluating high-resolution configurations of the WRF model that are used to forecast severe convective weather: The 2005 SPC/NSSL Spring Program. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 2A.5. [Available online at http://ams.confex.com/ams/pdfpapers/94843.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 1510–1521.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2007: Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.2. [Available online at http://ams.confex.com/ams/pdfpapers/124667.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at http://ams.confex.com/ams/pdfpapers/154118.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118–133.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.

  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291–303.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851–875.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16 663–16 682.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1977: The value of climatological, categorical and probabilistic forecasts in the cost–loss ratio situation. Mon. Wea. Rev., 105, 803–816.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427.

    • Search Google Scholar
    • Export Citation
  • Nutter, P., D. Stensrud, and M. Xue, 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Wea. Rev., 132, 2358–2377.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Applications of cost-loss models. Proc. Seventh ECMWF Workshop on Meteorological Operational Systems, Reading, United Kingdom, ECMWF, 209–213.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127, 2473–2489.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited — An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96 (D5), 9075–9096.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 2. NCAR Tech Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105 (D3), 4077–4086.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729–747.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599–2617.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527–548.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS) – A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143–165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139–170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2009: CAPS realtime 4-km multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. Extended Abstracts, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2. [Available online at http://ams.confex.com/ams/pdfpapers/154323.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5024 3783 362
PDF Downloads 623 127 6