Air–Sea Interaction in the Ligurian Sea: Assessment of a Coupled Ocean–Atmosphere Model Using In Situ Data from LASIE07

R. J. Small Naval Research Laboratory, Stennis Space Center, Mississippi
National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. J. Small in
Current site
Google Scholar
PubMed
Close
,
T. Campbell Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by T. Campbell in
Current site
Google Scholar
PubMed
Close
,
J. Teixeira National Aeronautics and Space Administration Jet Propulsion Laboratory, Pasadena, California

Search for other papers by J. Teixeira in
Current site
Google Scholar
PubMed
Close
,
S. Carniel Consiglio Nazionale delle Ricerche, ISMAR, Castello, Venice, Italy

Search for other papers by S. Carniel in
Current site
Google Scholar
PubMed
Close
,
T. A. Smith Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by T. A. Smith in
Current site
Google Scholar
PubMed
Close
,
J. Dykes Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by J. Dykes in
Current site
Google Scholar
PubMed
Close
,
S. Chen Naval Research Laboratory, Monterey, California

Search for other papers by S. Chen in
Current site
Google Scholar
PubMed
Close
, and
R. Allard Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by R. Allard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ experimental data and numerical model results are presented for the Ligurian Sea in the northwestern Mediterranean. The Ligurian Sea Air–Sea Interaction Experiment (LASIE07) and LIGURE2007 experiments took place in June 2007. The LASIE07 and LIGURE2007 data are used to validate the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, nonhydrostatic model, coupled to a hydrostatic sigma-z-level ocean model (Navy Coastal Ocean Model), using the Earth System Modeling Framework (ESMF).

A month-long simulation, which includes data assimilation in the atmosphere and full coupling, is compared against an uncoupled run where analysis SST is used for computation of the bulk fluxes. This reveals that COAMPS has reasonable skill in predicting the wind stress and surface heat fluxes at LASIE07 mooring locations in shallow and deep water. At the LASIE07 coastal site (but not at the deep site) the validation shows that the coupled model has a much smaller bias in latent heat flux, because of improvements in the SST field relative to the uncoupled model. This in turn leads to large differences in upper-ocean temperature between the coupled model and an uncoupled ocean model run.

Corresponding author address: R. J. Small, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: jsmall@ucar.edu

Abstract

In situ experimental data and numerical model results are presented for the Ligurian Sea in the northwestern Mediterranean. The Ligurian Sea Air–Sea Interaction Experiment (LASIE07) and LIGURE2007 experiments took place in June 2007. The LASIE07 and LIGURE2007 data are used to validate the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, nonhydrostatic model, coupled to a hydrostatic sigma-z-level ocean model (Navy Coastal Ocean Model), using the Earth System Modeling Framework (ESMF).

A month-long simulation, which includes data assimilation in the atmosphere and full coupling, is compared against an uncoupled run where analysis SST is used for computation of the bulk fluxes. This reveals that COAMPS has reasonable skill in predicting the wind stress and surface heat fluxes at LASIE07 mooring locations in shallow and deep water. At the LASIE07 coastal site (but not at the deep site) the validation shows that the coupled model has a much smaller bias in latent heat flux, because of improvements in the SST field relative to the uncoupled model. This in turn leads to large differences in upper-ocean temperature between the coupled model and an uncoupled ocean model run.

Corresponding author address: R. J. Small, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: jsmall@ucar.edu
Save
  • Allard, R. A., and Coauthors, 2010: Validation test report for the Coupled Ocean Atmospheric Mesoscale Prediction System (COAMPS) version 5. Naval Research Laboratory Rep. NRL/MR/7320-10-9283, 172 pp. [Available online at http://www7320.nrlssc.navy.mil/pubs/2010/allard2-2010.pdf.]

    • Search Google Scholar
    • Export Citation
  • Artale, V., and Coauthors, 2010: An atmosphere-ocean regional climate model for the Mediterranean area: Assessment of a present climate simulation. Climate Dyn., 35, 721740.

    • Search Google Scholar
    • Export Citation
  • Astraldi, M., and G. P. Gasparini, 1992: The seasonal characteristics of the circulation in the north Mediterranean basin and their relationship with atmospheric-climatic conditions. J. Geophys. Res., 97, 95319540.

    • Search Google Scholar
    • Export Citation
  • Astraldi, M., and G. P. Gasparini, 1994: The seasonal characteristics of the circulation in the Tyrrhenian Sea. Seasonal and Interannual Variability of the Western Mediterranean Sea, Coastal and Estuarine Studies, P. E. A. Violette, Ed., Vol. 46, Amer. Geophys. Union, 115–134.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., and A. B. Kara, 2006: Satellite-based daily SSTs over the global ocean. Geophys. Res. Lett., 33, L15603, doi:10.1029/2006GL026356.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., A. B. Kara, P. J. Martin, R. C. Rhodes, and L. F. Smedstad, 2006: Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modell., 11, 347375.

    • Search Google Scholar
    • Export Citation
  • Barth, A., A. Alvera-Azcarate, M. Rixen, and J.-M. Beckers, 2005: Two-way nested model of mesoscale circulation in the Ligurian Sea. Prog. Oceanogr., 66, 171189.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., K. Bolding, and M. R. Villarreal, 1999: GOTM–A general ocean turbulence model: Theory, applications and test cases. Tech. Rep. EUR 18745 EN, European Commission.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and A. Speranza, 1983: Cyclogenesis in the lee of the Alps. Mesoscale Meteorology—Theories, Observations, and Models, D. K. Lilly and T. Gal-Chen, Eds., D. Reidel Publishing Company, 55–142.

    • Search Google Scholar
    • Export Citation
  • Carniel, S., L. Kantha, A. Bergamasco, H. Prandke, R. J. Small, and M. Sclavo, 2010: Layered structures in the Ligurian sea. Il Nuovo Cimento B, 125, 15671586.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description. NRL Publication NRL/PU/7500-03-448, May 2003, 143 pp.

  • Chen, S., T. J. Campbell, H. Jin, S. Gaberšek, R. H. Hodur, and P. Martin, 2010: Effect of two-way air–sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 35793602.

    • Search Google Scholar
    • Export Citation
  • Crépon, M., L. Wald, and J.-M. Monget, 1982: Low frequency waves in the Ligurian Sea during December 1977. J. Geophys. Res., 87, 595600.

    • Search Google Scholar
    • Export Citation
  • Crépon, M., M. Boukthir, B. Barnier, and F. Aikman III, 1989: Horizontal ocean circulation forced by deep water formation. Part I: An analytical study. J. Phys. Oceanogr., 19, 17811792.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604.

  • Drobinski, P., and Coauthors, 2005: Summer mistral at the exit of the Rhone valley. Quart. J. Roy. Meteor. Soc., 131, 353375.

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996a: Bulk parameterisation of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996b: Cool-skin and warm layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., 2003: Alpine lee cyclogenesis influence on air-sea heat exchanges and marine atmospheric boundary layer thermodynamics over the western Mediterranean during a Tramontane/Mistral event. J. Geophys. Res., 108, 8057, doi:10.1029/2001JC001040.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., and R. Proctor, 1983: Prediction of North Sea storm surges using numerical models: Recent developments in the UK. North Sea Dynamics, J. Sundemann and W. Lenz, Eds., Springer, 299–317.

    • Search Google Scholar
    • Export Citation
  • Grandi, V., A. Carta, L. Gualdesi, F. deStrobel, and S. Fioravanti, 2005: An overview of SEPTR: Shallow water Environmental Profiler in a Trawl-Safe Real Time Configuration. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology., Southampton, United Kingdom, IEEE, 142–146.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. Randall, and T. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 10091016.

    • Search Google Scholar
    • Export Citation
  • Herbaut, C., F. Martel, and M. Crépon, 1997: A sensitivity study of the general circulation of the western Mediterranean Sea. Part II: The response to atmospheric forcing. J. Phys. Oceanogr., 27, 21262145.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and T. E. Rosmond, 1991: The description of the U.S. Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Martin, P. J., 2000: A description of the Navy Coastal Ocean model version 1.0. NRL Rep. NRL/FR/7322-00-9962, Naval Research Laboratory, Stennis Space Center, MS, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., J. W. Book, and J. D. Doyle, 2006: Simulation of the northern Adriatic circulation during winter 2003. J. Geophys. Res., 111, C03S12, doi:10.1029/2006JC003511.

    • Search Google Scholar
    • Export Citation
  • May, D. A., M. M. Parmeter, D. S. Olsewski, and B. D. McKenzie, 1998: Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bull. Amer. Meteor. Soc., 79, 397407.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., B. Buongiorno Nardelli, M. Guarracino, and R. Santoleri, 2007: Observing the Mediterranean from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Sci., 3, 299310.

    • Search Google Scholar
    • Export Citation
  • Onken, R., A. R. Robinson, L. H. Kantha, C. J. Lozano, J. P. Haley, and S. Carniel, 2005: Inter-model nesting and rapid data exchange in distributed systems. J. Mar. Syst., 56, 4566, doi:10.1016/j.marsys.2004.09.010.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269.

  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 84118427.

    • Search Google Scholar
    • Export Citation
  • Pullen, J., J. D. Doyle, T. Haack, C. Dorman, R. P. Signell, and C. M. Lee, 2007: Bora event variability and the role of air-sea feedback. J. Geophys. Res., 112, C03S18, doi:10.1029/2006JC003276.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 35453562.

    • Search Google Scholar
    • Export Citation
  • Rodi, W., 1987: Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res., 92 (C5), 53055328.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Salusti, E., 1998: Satellite images of upwellings and cold filament dynamics as transient effects of violent air-sea interactions downstream from the island of Sardinia. J. Geophys. Res., 103, 30133031.

    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Visbeck, U. Send, J. Fischer, L. Stramma, and Y. Desaubies, 1996: Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991–92. J. Phys. Oceanogr., 26, 505524.

    • Search Google Scholar
    • Export Citation
  • Sempreviva, A. M., and Coauthors, 2010: Observed development of the vertical structure of the marine boundary layer during the LASIE experiment in the Ligurian Sea. Ann. Geophys., 28, 1725.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. 1: The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Somot, S., F. Sevault, M. Deque, and M. Crepon, 2008: 21st Century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planet. Change, 63, 112126.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 2007: Ligurian Sea Air-Sea Interaction Experiment (LASIE) trial plan. NATO Undersea Research Centre, La Spezia, Italy, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence. J. Mar. Res., 61, 235265.

  • Wentz, F. J., and D. K. Smith, 1999: A model function for the ocean-normalised radar cross-section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11 49911 514.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 85 6
PDF Downloads 114 31 9