Cyclone Interactions and Evolutions during the “Perfect Storms” of Late October and Early November 1991

Jason M. Cordeira Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Jason M. Cordeira in
Current site
Google Scholar
PubMed
Close
and
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the cyclogenesis of the “Perfect Storms” of late October and early November 1991 over the North Atlantic and focuses on the influence of Hurricane Grace (HG) toward their development. The two storms considered are the “Perfect Storm” (PS) that underwent a warm seclusion process and an extratropical cyclone (EC1) with two development phases. HG, which initially formed via tropical transition (TT), influenced the first phase of EC1 via reduced atmospheric static stability and enhanced low-level baroclinicity. As a result, deep moist convection and latent heat release produced maxima in midtropospheric diabatic heating and lower-tropospheric potential vorticity (PV) that aided the development of EC1. Backward air parcel trajectories and large diabatic contributions to eddy available potential energy (APE) generation suggests that EC1 developed as a diabatic Rossby vortex (DRV)-like feature.

The second and explosively deepening phase of EC1 occurred as the cyclone coupled with an upper-tropospheric PV disturbance (PVD) over the eastern North Atlantic. Backward air parcel trajectories demonstrate the explosive deepening of EC1 involved airstreams originating from east of HG and from over the Labrador Sea. Parcel trajectories and a large baroclinic contribution to eddy APE generation further suggests that the two-phase development of EC1 may have involved a DRV-like feature.

The subsequent recurvature and extratropical transition (ET) of HG occurred in the warm sector of the PS downstream of a second upper-tropospheric PVD over the western North Atlantic. Reduced atmospheric static stability, enhanced warm air advection, and strong latent heat release during the recurvature and ET of HG contributed to the development of a strong, zonally oriented warm front and the warm seclusion of the PS. Parcel trajectory analysis demonstrates that the PS warm seclusion involved the isolation of air parcels by a bent-back warm front that were warmed via sensible heating from the underlying Gulf Stream.

Corresponding author address: Jason M. Cordeira, Dept. of Atmospheric and Environmental Sciences, ES-351, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222. E-mail: cordeira@atmos.albany.edu

Abstract

This paper examines the cyclogenesis of the “Perfect Storms” of late October and early November 1991 over the North Atlantic and focuses on the influence of Hurricane Grace (HG) toward their development. The two storms considered are the “Perfect Storm” (PS) that underwent a warm seclusion process and an extratropical cyclone (EC1) with two development phases. HG, which initially formed via tropical transition (TT), influenced the first phase of EC1 via reduced atmospheric static stability and enhanced low-level baroclinicity. As a result, deep moist convection and latent heat release produced maxima in midtropospheric diabatic heating and lower-tropospheric potential vorticity (PV) that aided the development of EC1. Backward air parcel trajectories and large diabatic contributions to eddy available potential energy (APE) generation suggests that EC1 developed as a diabatic Rossby vortex (DRV)-like feature.

The second and explosively deepening phase of EC1 occurred as the cyclone coupled with an upper-tropospheric PV disturbance (PVD) over the eastern North Atlantic. Backward air parcel trajectories demonstrate the explosive deepening of EC1 involved airstreams originating from east of HG and from over the Labrador Sea. Parcel trajectories and a large baroclinic contribution to eddy APE generation further suggests that the two-phase development of EC1 may have involved a DRV-like feature.

The subsequent recurvature and extratropical transition (ET) of HG occurred in the warm sector of the PS downstream of a second upper-tropospheric PVD over the western North Atlantic. Reduced atmospheric static stability, enhanced warm air advection, and strong latent heat release during the recurvature and ET of HG contributed to the development of a strong, zonally oriented warm front and the warm seclusion of the PS. Parcel trajectory analysis demonstrates that the PS warm seclusion involved the isolation of air parcels by a bent-back warm front that were warmed via sensible heating from the underlying Gulf Stream.

Corresponding author address: Jason M. Cordeira, Dept. of Atmospheric and Environmental Sciences, ES-351, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222. E-mail: cordeira@atmos.albany.edu
Save
  • Agustí-Panareda, A., 2008: The contribution of ex–Tropical Cyclone Gert (1999) toward the weakening of a midlatitude cyclogenesis event. Mon. Wea. Rev., 136, 20912111.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. D. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573.

    • Search Google Scholar
    • Export Citation
  • Baehr, C., B. Pouponneau, F. Ayrault, and A. Joly, 1999: Dynamical characterization of the FASTEX cyclogenesis cases. Quart. J. Roy. Meteor. Soc., 125, 34693494.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. I, Principles of Kinematics and Dynamics, Oxford University Press, 431 pp.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1999: Observed cyclone life cycles. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 187–213.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1976: Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104, 11221140.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271287.

  • Cardone, V. J., R. E. Jensen, D. T. Resio, V. R. Swail, and A. T. Cox, 1996: Evaluation of contemporary ocean wave models in rare extreme events: the “Halloween Storm” of October 1991 and the “Storm of the Century” of March 1993. J. Atmos. Oceanic Technol., 13, 198230.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through mid-latitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509.

  • Conzemius, R. J., R. W. Moore, M. T. Montgomery, and C. A. Davis, 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64, 14431466.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 138, 25462569.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana. Part I: Control simulation. Mon. Wea. Rev., 129, 18591881.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747.

  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecast the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., K. A. Browning, and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1984: Modal and nonmodal baroclinic waves. J. Atmos. Sci., 41, 668673.

  • Galarneau, T. J., Jr., L. F. Bosart, C. A. Davis, and R. McTaggart-Cowan, 2009: Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev., 137, 562584.

    • Search Google Scholar
    • Export Citation
  • Gilet, J.-B., M. Plu, and G. Rivière, 2009: Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet. J. Atmos. Sci., 66, 30213041.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., P. J. Roebber, and T. A. Bullock, 1992: The role of antecedent surface vorticity development as a conditioning process in explosive cyclone intensification. Mon. Wea. Rev., 120, 14651489.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, G. J. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—Cold and warm fronts. J. Atmos. Sci., 36, 16631680.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of the isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six case survey. Mon. Wea. Rev., 137, 36053625.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., and R. K. Smith, 2000: Convective destabilization by upper-level troughs. Quart. J. Roy. Meteor. Soc., 126, 111123.

  • Junger, S., 1997: The Perfect Storm. W. W. Norton & Company, 227 pp.

  • Kenzelmann, P., 2005: Dynamics and Climatology of Diabatic Rossby Waves. Diplomarbeit, University of Mainz, 90 pp.

  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120, 22802297.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., L. F. Bosart, and D. Keyser, 1996: Planetary- and synoptic-scale characteristics of explosive wintertime cyclogenesis over the western North Atlantic Ocean. Mon. Wea. Rev., 124, 27292758.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley & Sons, 324 pp.

  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina (2005). Part II: Evolution and hemispheric impacts of a diabatically generated warm pool. Mon. Wea. Rev., 135, 39273949.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude moist cyclogenesis. J. Atmos. Sci., 61, 754768.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., M. T. Montgomery, and H. C. Davies, 2008: The integral role of a diabatic Rossby vortex in a heavy snowfall event. Mon. Wea. Rev., 136, 18781897.

    • Search Google Scholar
    • Export Citation
  • Muench, H. S., 1965: On the dynamics of the wintertime stratospheric circulation. J. Atmos. Sci., 22, 349360.

  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 334342.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., 1991: Preliminary report: Unnamed Hurricane 28 October– 3 November 1991. National Hurricane Center, 7 pp. [Available online at http://www.nhc.noaa.gov/.]

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., and L. A. Avila, 1992: Atlantic hurricane season of 1991. Mon. Wea. Rev., 120, 26882696.

  • Petterssen, S., 1955: A general survey of factors influencing development at sea level. J. Meteor., 12, 3642.

  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482.

  • Plu, M., and P. Arbogast, 2005: A cyclogenesis evolving into two distinct scenarios and its implications for short-term ensemble forecasting. Mon. Wea. Rev., 133, 20162029.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Reed, R. J., and M. D. Albright, 1986: A case study of explosive cyclogenesis in the eastern Pacific. Mon. Wea. Rev., 114, 22972319.

  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2008: Barotropic regeneration of upper-level synoptic disturbances in different configurations of the zonal weather regime. J. Atmos. Sci., 65, 31593178.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Planetary waves, cyclogenesis, and the irregular breakdown of zonal motion over the North Atlantic. Mon. Wea. Rev., 137, 39073917.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–1984. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “Bomb.”. Mon. Wea. Rev., 108, 15891606.

  • Schär, C., and H. Wernli, 1993: Structure and evolution of an isolated semi-geostrophic cyclone. Quart. J. Roy. Meteor. Soc., 119, 5790.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140154.

  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O Holopainen, Eds., Amer. Meteor. Soc., 167–191.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432.

  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130, 590609.

    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76, 189217.

    • Search Google Scholar
    • Export Citation
  • Takayabu, I., 1991: “Coupling development”: An efficient mechanism for the development of extratropical cyclones. J. Meteor. Soc. Japan, 69, 837841.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case study. Quart. J. Roy. Meteor. Soc., 123, 16771706.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 899 322 156
PDF Downloads 362 88 18