Lightning Activity in a Hail-Producing Storm Observed with Phased-Array Radar

C. Emersic Cooperative Institute for Mesoscale Convective Systems, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by C. Emersic in
Current site
Google Scholar
PubMed
Close
,
P. L. Heinselman NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by P. L. Heinselman in
Current site
Google Scholar
PubMed
Close
,
D. R. MacGorman NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by D. R. MacGorman in
Current site
Google Scholar
PubMed
Close
, and
E. C. Bruning Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by E. C. Bruning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examined lightning activity relative to the rapidly evolving kinematics of a hail-producing storm on 15 August 2006. Data were provided by the National Weather Radar Testbed Phased-Array Radar, the Oklahoma Lightning Mapping Array, and the National Lightning Detection Network.

This analysis is the first to compare the electrical characteristics of a hail-producing storm with the reflectivity and radial velocity structure at temporal resolutions of less than 1 min. Total flash rates increased to approximately 220 min−1 as the storm’s updraft first intensified, leveled off during its first mature stage, and then decreased for 2–3 min despite the simultaneous development of another updraft surge. This reduction in flash rate occurred as wet hail formed in the new updraft and was likely related to the wet growth; wet growth is not conducive to hydrometeor charging and probably contributed to the formation of a “lightning hole” without a mesocyclone. Total flash rates subsequently increased to approximately 450 min−1 as storm volume and inferred graupel volume increased, and then decreased as the storm dissipated.

The vertical charge structure in the storm initially formed a positive tripole (midlevel negative charge between upper and lower positive charges). The charge structure in the second updraft surge consisted of a negative charge above a deep midlevel positive charge, a reversal consistent with the effects of large liquid water contents on hydrometeor charge polarity in laboratory experiments.

Prior to the second updraft surge, the storm produced two cloud-to-ground flashes, both lowering the usual negative charge to ground. Shortly before hail likely reached ground, the storm produced four cloud-to-ground flashes, all lowering the positive charge. Episodes of high singlet VHF sources were observed at approximately 13–15 km during the initial formation and later intensification of the storm’s updraft.

Current affiliation: Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom.

Corresponding author address: Dr. Pamela Heinselman, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: pam.heinselman@noaa.gov

Abstract

This study examined lightning activity relative to the rapidly evolving kinematics of a hail-producing storm on 15 August 2006. Data were provided by the National Weather Radar Testbed Phased-Array Radar, the Oklahoma Lightning Mapping Array, and the National Lightning Detection Network.

This analysis is the first to compare the electrical characteristics of a hail-producing storm with the reflectivity and radial velocity structure at temporal resolutions of less than 1 min. Total flash rates increased to approximately 220 min−1 as the storm’s updraft first intensified, leveled off during its first mature stage, and then decreased for 2–3 min despite the simultaneous development of another updraft surge. This reduction in flash rate occurred as wet hail formed in the new updraft and was likely related to the wet growth; wet growth is not conducive to hydrometeor charging and probably contributed to the formation of a “lightning hole” without a mesocyclone. Total flash rates subsequently increased to approximately 450 min−1 as storm volume and inferred graupel volume increased, and then decreased as the storm dissipated.

The vertical charge structure in the storm initially formed a positive tripole (midlevel negative charge between upper and lower positive charges). The charge structure in the second updraft surge consisted of a negative charge above a deep midlevel positive charge, a reversal consistent with the effects of large liquid water contents on hydrometeor charge polarity in laboratory experiments.

Prior to the second updraft surge, the storm produced two cloud-to-ground flashes, both lowering the usual negative charge to ground. Shortly before hail likely reached ground, the storm produced four cloud-to-ground flashes, all lowering the positive charge. Episodes of high singlet VHF sources were observed at approximately 13–15 km during the initial formation and later intensification of the storm’s updraft.

Current affiliation: Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom.

Corresponding author address: Dr. Pamela Heinselman, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: pam.heinselman@noaa.gov
Save
  • Baker, B., M. B. Baker, E. R. Jayaratne, J. Latham, and C. P. R. Saunders, 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Meteor. Soc., 113, 11931215.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028.

  • Blythe, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., 2008: Charging regions, regions of charge, and storm structure in a partially inverted polarity supercell thunderstorm. Ph.D. dissertation, University of Oklahoma, 114 pp.

  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, D. R. MacGorman, M. I. Biggerstaff, and T. J. Schuur, 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 37403761.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: Relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev., 135, 13271353.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1992: Temporal and spatial relations between hail and lightning. J. Appl. Meteor., 31, 587604.

  • Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108, 4298, doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Dash, J. G., B. L. Mason, and J. S. Wettlaufer, 2001: Theory of charge and mass transfer in ice–ice collisions. J. Geophys. Res., 106, 20 39520 402.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Dye, J. E., J. J. Jones, A. J. Weinheimer, and W. P. Winn, 1988: Observations within two regions of charge during initial thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 114, 12711290.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and H. W. Frank, 1983: Case study of a hailstorm in Colorado. Part III: Airflow from triple-Doppler measurements. J. Atmos. Sci., 40, 686707.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824.

    • Search Google Scholar
    • Export Citation
  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103117.

  • Jayaratne, E. R., and C. P. R. Saunders, 1984: The “rain-gush”, lightning, and the lower positive charge center in thunderstorms. J. Geophys. Res., 89, 11 81611 818.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630.

    • Search Google Scholar
    • Export Citation
  • Kitagawa, N., 1992: Charge distribution of winter thunderstorms. Res. Lett. Atmos. Electr., 12, 143153.

  • Kitagawa, N., and K. Michimoto, 1994: Meteorological and electrical aspects of winter thunderclouds. J. Geophys. Res., 99, 10 71310 721.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 2125.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., D. R. MacGorman, M. I. Biggerstaff, and P. R. Krehbiel, 2009: Lightning initiation in the anvil of supercell storms. Geophys. Res. Lett., 36, L07802, doi:10.1029/2008GL036650.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 11071125.

    • Search Google Scholar
    • Export Citation
  • Lund, N., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 442 pp.

  • MacGorman, D. R., A. A. Few, and T. L. Teer, 1981: Layered lighting activity. J. Geophys. Res., 86, 99009910.

  • MacGorman, D. R., W. L. Taylor, and A. A. Few, 1983: Lightning location from acoustic and VHF techniques relative to storm structure from 10 cm radar. Proceedings in Atmospheric Electricity, L. H. Ruhnke and J. Latham, Eds., A. Deepak Publishing, 377–380.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40, 459478.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., T. Filiaggi, R. L. Holle, and R. A. Brown, 2007: Negative cloud-to-ground lightning flash rates relative to VIL, maximum reflectivity, cell height, and cell isolation. J. Lightning Res., 1, 132147.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Maekawa, Y., S. Fukao, Y. Sonoi, and F. Yoshino, 1992: Dual polarization radar observations of anomalous wintertime thunderclouds in Japan. IEEE Trans. Geosci. Remote Sens., 30, 838844.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, J. M. Straka, and C. L. Ziegler, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, 4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 71417157.

    • Search Google Scholar
    • Export Citation
  • Michimoto, K., 1991: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku district. Part I: Observation and analysis of thunderclouds in summer and winter. J. Meteor. Soc. Japan, 69, 327335.

    • Search Google Scholar
    • Export Citation
  • Michimoto, K., 1993: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku district. Part II: Observation and analysis of “single-flash” thunderclouds in midwinter. J. Meteor. Soc. Japan, 71, 195204.

    • Search Google Scholar
    • Export Citation
  • Mitzeva, R. P., C. P. R. Saunders, and B. Tsenova, 2005: A modelling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification. Atmos. Res., 76, 206221.

    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., E. E. Avila, N. E. Castellano, and C. P. R. Saunders, 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20 80320 812.

    • Search Google Scholar
    • Export Citation
  • Riousset, J. A., V. P. Pasko, P. R. Krehbiel, R. J. Thomas, and W. Rison, 2007: Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations. J. Geophys. Res., 112, D15203, doi:10.11029/12006JD007621.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, 1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., W. L. Taylor, D. R. MacGorman, and R. T. Arnold, 1981: Research on electrical properties of severe thunderstorms in the Great Plains. Bull. Amer. Meteor. Soc., 62, 12861293.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and I. M. Brooks, 1992: The effects of high liquid water content on thunderstorm charging. J. Geophys. Res., 97, 14 67114 676.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, E. E. Avila, and N. E. Castellano, 2004: A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 130, 13951406.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., D. R. MacGorman, and F. H. Carr, 2000: Cloud-to-ground lightning throughout the lifetime of a severe storm system in Oklahoma. Mon. Wea. Rev., 128, 17981716.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101, 26 64126 668.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., 1992: Observations of cloud-top entrainment in cumuli. J. Atmos. Sci., 49, 13341347.

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Taylor, W. L., E. A. Brandes, W. D. Rust, and D. R. MacGorman, 1984: Lightning activity and severe storm structure. Geophys. Res. Lett., 11, 545548.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. J. Heckman, H. J. Christian, and Z. I. Kawasaki, 2003: Vertical development of lightning activity observed by the LDAR system: Lightning bubbles. J. Appl. Meteor., 42, 165174.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1985: Electrical discharge propagation in and around space charge clouds. J. Geophys. Res., 90, 60596070.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, 527–561.

  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306.

    • Search Google Scholar
    • Export Citation
  • Yijun, Z., P. R. Krehbiel, and L. Xinsheng, 2002: Polarity inverted intracloud discharges and electric charge structure of thunderstorm. Chin. Sci. Bull., 47, 17251729.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51, 833851.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, P. S. Ray, and J. E. Dye, 1991: A model evaluation of non-inductive graupel–ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12 83312 855.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1987: Three-body scattering produces precipitation signature of special diagnostic-value. Radio Sci., 22, 7686.

  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1034 375 61
PDF Downloads 594 178 20