Seasonal, Regional, and Storm-Scale Variability of Cloud-to-Ground Lightning Characteristics in Florida

Scott D. Rudlosky Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Scott D. Rudlosky in
Current site
Google Scholar
PubMed
Close
and
Henry E. Fuelberg Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Henry E. Fuelberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal, regional, and storm-scale variations of cloud-to-ground (CG) lightning characteristics in Florida are presented. Strong positive CG (+CG) and negative CG (−CG) flashes (i.e., having large peak current) are emphasized since they often are associated with strong storms, structural damage, and wildfire ignitions. Although strong −CG flashes are most common during the warm season (May–September) over the peninsula, the greatest proportion of strong +CG flashes occurs during the cool season (October–April) over the panhandle. The warm season exhibits the smallest +CG percentage but contains the greatest +CG flash densities, due in part to more ambiguous +CG reports (15–20 kA). The more frequent occurrence of ambiguous +CG reports helps explain the unusually small average +CG peak current during the warm season, whereas strong +CG reports (>20 kA) appear to be responsible for the greater average warm season +CG multiplicity. The −CG flash density, multiplicity, and peak current appear to be directly related, exhibiting their greatest values during the warm season when deep storms are most common. A case study examines the atmospheric conditions and storm-scale processes associated with two distinct groups of storms on 13–14 May 2007. Although these groups of storms form in close proximity, several factors combine to produce predominately strong +CG and −CG flashes in the northern (south Georgia) and southern (north Florida) regions, respectively. Results suggest that heat and smoke very near preexisting wildfires are key ingredients in producing reversed-polarity (+CG dominated) storms that often ignite subsequent wildfires.

Corresponding author address: Scott D. Rudlosky, EOAS—Meteorology, The Florida State University, P.O. Box 3064520, Tallahassee, FL 32306-4520. E-mail: srudlosky@fsu.edu

Abstract

Seasonal, regional, and storm-scale variations of cloud-to-ground (CG) lightning characteristics in Florida are presented. Strong positive CG (+CG) and negative CG (−CG) flashes (i.e., having large peak current) are emphasized since they often are associated with strong storms, structural damage, and wildfire ignitions. Although strong −CG flashes are most common during the warm season (May–September) over the peninsula, the greatest proportion of strong +CG flashes occurs during the cool season (October–April) over the panhandle. The warm season exhibits the smallest +CG percentage but contains the greatest +CG flash densities, due in part to more ambiguous +CG reports (15–20 kA). The more frequent occurrence of ambiguous +CG reports helps explain the unusually small average +CG peak current during the warm season, whereas strong +CG reports (>20 kA) appear to be responsible for the greater average warm season +CG multiplicity. The −CG flash density, multiplicity, and peak current appear to be directly related, exhibiting their greatest values during the warm season when deep storms are most common. A case study examines the atmospheric conditions and storm-scale processes associated with two distinct groups of storms on 13–14 May 2007. Although these groups of storms form in close proximity, several factors combine to produce predominately strong +CG and −CG flashes in the northern (south Georgia) and southern (north Florida) regions, respectively. Results suggest that heat and smoke very near preexisting wildfires are key ingredients in producing reversed-polarity (+CG dominated) storms that often ignite subsequent wildfires.

Corresponding author address: Scott D. Rudlosky, EOAS—Meteorology, The Florida State University, P.O. Box 3064520, Tallahassee, FL 32306-4520. E-mail: srudlosky@fsu.edu
Save
  • Arritt, R. W., 1993: Effects of large-scale flow on the characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National lightning detection network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87 (C2), 12071215.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and K. M. Buffalo, 2007: Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Wea. Rev., 135, 13271353.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51 (3), 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 (D8), 90359044.

    • Search Google Scholar
    • Export Citation
  • Engholm, C. D., E. R. Williams, and R. M. Dole, 1990: Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Wea. Rev., 118, 470487.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X. M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains. Atmos. Res., 91 (2–4), 333352.

    • Search Google Scholar
    • Export Citation
  • Fuquay, D. M., 1982: Positive cloud-to-ground lightning in summer thunderstorms. J. Geophys. Res., 87 (C9), 71317140.

  • Fuquay, D. M., A. R. Taylor, R. G. Hawe, and C. W. Schmid, 1972: Lightning discharges that caused forest fires. J. Geophys. Res., 77, 21562158.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., R. J. Blakeslee, W. Koshak, W. Petersen, D. E. Buechler, P. R. Krehbiel, P. Gatlin, and S. Zubrick, 2008: Pre-launch algorithms and risk reduction in support of the Geostationary Lightning Mapper for GOES-R and beyond. Preprints, Third Conf. on Meteorological Applications of Lightning Data, New Orleans, LA, Amer. Meteor. Soc., P3.3. [Available online at http://ams.confex.com/ams/88Annual/techprogram/paper_129401.htm.]

    • Search Google Scholar
    • Export Citation
  • Heckman, S., 1992: Why does a lightning flash have multiple strokes? Ph.D. thesis, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 134 pp.

  • Hodanish, S., D. Sharp, W. Collins, C. Paxton, and R. E. Orville, 1997: A 10-yr monthly lightning climatology of Florida: 1986–95. Wea. Forecasting, 12, 439448.

    • Search Google Scholar
    • Export Citation
  • Knapp, D. I., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Dig., 19, 3542.

    • Search Google Scholar
    • Export Citation
  • Kong, X., X. Qie, and Y. Zhao, 2008: Characteristics of downward leader in a positive cloud-to-ground lightning flash observed by high-speed video camera and electric field changes. Geophys. Res. Lett., 35, L05816, doi:10.1029/2007GL032764.

    • Search Google Scholar
    • Export Citation
  • Kopp, T. J., and R. E. Orville, 1987: A case study of positive cloud-to-ground flashes in the GALE program. Eos, Trans. Amer. Geophys. Union, 68, 277

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1981: An analysis of the electric field change produced by lightning. Tech. Rep. T-11, Geophysical Research Center, Institute of Mining and Technology, Socorro, NM, 245 pp.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., M. Brook, and R. A. McCrory, 1979: An analysis of the charge structure of lightning discharges to ground. J. Geophys. Res., 84, 24322456.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365.

  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2006: Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett., 33, L03804, doi:10.1029/2005GL024608.

    • Search Google Scholar
    • Export Citation
  • Latham, D., and E. Williams, 2001: Lightning and forest fires. Forest Fires: Behavior and Ecological Effects, E. A. Johnson and K. Miyanishi, Eds., Academic Press, 375–418.

    • Search Google Scholar
    • Export Citation
  • Lericos, T. P., H. E. Fuelberg, A. I. Watson, and R. L. Holle, 2002: Warm season lightning distributions over the Florida Peninsula as related to synoptic patterns. Wea. Forecasting, 17, 8398.

    • Search Google Scholar
    • Export Citation
  • López, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 12881312.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., M. Uliasz, and T. E. Nelson, 1998a: Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Mon. Wea. Rev., 126, 22172233.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. Cramer, and T. Turner, 1998b: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 7781.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697.

    • Search Google Scholar
    • Export Citation
  • Murray, N. D., R. E. Orville, and G. R. Huffines, 2000: Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett., 27, 22492252.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127, 26932703.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., 2003: A review of positive and bipolar lightning discharges. Bull. Amer. Meteor. Soc., 84, 767776.

  • Rakov, V. A., and M. A. Uman, 2003: Lightning—Physics and Effects. Cambridge University Press, 687 pp.

  • Rakov, V. A., M. A. Uman, and R. Thottappillil, 1994: Review of lightning properties from electric field and TV observations. J. Geophys. Res., 99, 10 74510 750.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., 1994: Analysis and prediction of lightning strike distributions associated with synoptic map types over Florida. Mon. Wea. Rev., 122, 16981715.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Fromm, J. Trentmann, G. Luderer, M. O. Andreae, and R. Servranckx, 2007: The Chisholm firestorms: Observed microstructure, precipitation, and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys., 7, 645659.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2009: Utilizing WDSS-II to automate dataset preparation for a statistical investigation of total lightning and radar echoes within severe and non-severe storms. Preprints, Fourth Conf. on Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., P2.4. [Available online at http://ams.confex.com/ams/pdfpapers/150719.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., D. R. MacGorman, and R. T. Arnold, 1981: Positive cloud-to-ground lightning flashes in severe storms. Geophys. Res. Lett., 8, 791794.

    • Search Google Scholar
    • Export Citation
  • Saba, M. M. F., O. Pinto Jr., and M. G. Ballarotti, 2006: Relation between lightning return stroke peak current and following continuing current. Geophys. Res. Lett., 33, L23807, doi:10.1029/2006GL027455.

    • Search Google Scholar
    • Export Citation
  • Saba, M. M. F., M. G. Ballarotti, L. Z. S. Campos, and O. Pinto Jr., 2007: High-speed video observations of positive lightning. Proc. Ninth Int. Symp. on Lightning Protection, Foz do Iguacu, Brazil, Institute of Electrotechnics and Energy of the University of São Paulo, 5 pp. [Available online at http://ws9.iee.usp.br/sipdax/papersix/sessao01/1.5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., D. J. Latham, C. B. Moore, and S. J. Hunyady, 1995: An explanation for anomalous lightning from forest fire clouds. J. Geophys. Res., 100, 50375050.

    • Search Google Scholar
    • Export Citation
  • Wang, J., S. Van den Heever, and J. S. Reid, 2009: A conceptual model for the link between Central American biomass burning aerosols and severe weather over the south central United States. Environ. Res. Lett., 4, 015003, doi:10.1088/1748-9326/4/1/015003.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J. Appl. Meteor., 34, 16331642.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1985: Large scale charge separation in thunderclouds. J. Geophys. Res., 90, 60136025.

  • Williams, E. R., 2006: Problems in lightning physics—The role of polarity asymmetry. Plasma Sources Sci. Technol., 15, S91S108, doi:10.1088/0963-0252/15/2/S12.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306.

    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129, 9991019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 516 105 11
PDF Downloads 242 82 7