Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations

J. Berner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Berner in
Current site
Google Scholar
PubMed
Close
,
S.-Y. Ha National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S.-Y. Ha in
Current site
Google Scholar
PubMed
Close
,
J. P. Hacker Naval Postgraduate School, Monterey, California

Search for other papers by J. P. Hacker in
Current site
Google Scholar
PubMed
Close
,
A. Fournier National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Fournier in
Current site
Google Scholar
PubMed
Close
, and
C. Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by C. Snyder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A multiphysics and a stochastic kinetic-energy backscatter scheme are employed to represent model uncertainty in a mesoscale ensemble prediction system using the Weather Research and Forecasting model. Both model-error schemes lead to significant improvements over the control ensemble system that is simply a downscaled global ensemble forecast with the same physics for each ensemble member. The improvements are evident in verification against both observations and analyses, but different in some details. Overall the stochastic kinetic-energy backscatter scheme outperforms the multiphysics scheme, except near the surface. Best results are obtained when both schemes are used simultaneously, indicating that the model error can best be captured by a combination of multiple schemes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: J. Berner, NCAR, P.O. Box 3000, Boulder, C0 80305-3000. E-mail: berner@ucar.edu

Abstract

A multiphysics and a stochastic kinetic-energy backscatter scheme are employed to represent model uncertainty in a mesoscale ensemble prediction system using the Weather Research and Forecasting model. Both model-error schemes lead to significant improvements over the control ensemble system that is simply a downscaled global ensemble forecast with the same physics for each ensemble member. The improvements are evident in verification against both observations and analyses, but different in some details. Overall the stochastic kinetic-energy backscatter scheme outperforms the multiphysics scheme, except near the surface. Best results are obtained when both schemes are used simultaneously, indicating that the model error can best be captured by a combination of multiple schemes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: J. Berner, NCAR, P.O. Box 3000, Boulder, C0 80305-3000. E-mail: berner@ucar.edu
Save
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117.

    • Search Google Scholar
    • Export Citation
  • Berner, J., F. J. Doblas-Reyes, T. N. Palmer, G. Shutts, and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal predicition skill of a global climate model. Philos. Trans. Roy. Soc. London, 366A, 25612579.

    • Search Google Scholar
    • Export Citation
  • Berner, J., M. L. G. Shutts, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev., 133, 10761097.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian Ensemble Prediction System. Mon. Wea. Rev., 138, 18771901.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical seasonal forecasts. Quart. J. Roy. Meteor. Soc., 135, 15381559.

    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range, ensemble forecasting. Wea. Forecasting, 20, 328350.

  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739759.

  • Frederiksen, J. S., and A. G. Davies, 1997: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci., 54, 24752492.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 2004: The regularized DIA closure for two-dimensional turbulence. Geophys. Astrophys. Fluid Dyn., 98, 203223.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and S. M. Kepert, 2006: Dynamical subgrid-scale parameterizations from direct numerical simulations. J. Atmos. Sci., 63, 30063019.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, in press, doi:10.1111/j.1600-0870.2010.00497.x.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., and D. Stephenson, 2003: Forecast Verification: A Practitioners Guide in Atmospheric Science. Wiley and Sons, 240 pp.

  • Kalnay, E., M. Kanamitsu, and W. Baker, 1990: Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc., 71, 14101428.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443462.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Mason, P., and D. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178.

  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269298.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins, and D. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm598.pdf.]

    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84, 921925.

  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., C. Penland, and M. Newman, 2001: Rossby waves in a fluctuating medium. Progress in Probability: Stochastic Climate Models, P. Imkeller and J.-S. von Storch, Eds., Vol. 49, Birkäuser Verlag, 369–384.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and T. N. Palmer, 2007: Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. J. Climate, 20, 187202.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107.

    • Search Google Scholar
    • Export Citation
  • Teixeira, L., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496.

    • Search Google Scholar
    • Export Citation
  • Tennant, W., G. Shutts, and A. Arribas, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330.

  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 464 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2386 873 93
PDF Downloads 1106 286 34