Soil Initialization Strategy for Use in Limited-Area Weather Prediction Systems

Francesca Di Giuseppe Servizio IdroMeteoClima, ARPA, Bologna, Italy

Search for other papers by Francesca Di Giuseppe in
Current site
Google Scholar
PubMed
Close
,
Davide Cesari Servizio IdroMeteoClima, ARPA, Bologna, Italy

Search for other papers by Davide Cesari in
Current site
Google Scholar
PubMed
Close
, and
Giovanni Bonafé Servizio IdroMeteoClima, ARPA, Bologna, Italy

Search for other papers by Giovanni Bonafé in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three diverse methods of initializing soil moisture and temperature in limited-area numerical weather prediction models are compared and assessed through the use of nonstandard surface observations to identify the approach that best combines ease of implementation, improvement in forecast skill, and realistic estimations of soil parameters. The first method initializes the limited-area model soil prognostic variables by a simple interpolation from a parent global model that is used to provide the lateral boundary conditions for the forecasts, thus ensuring that the limited-area model’s soil field cannot evolve far from the host model. The second method uses the soil properties generated by a previous limited-area model forecast, allowing the soil moisture to evolve over time to a new equilibrium consistent with the regional model’s hydrological cycle. The third method implements a new local soil moisture variational analysis system that uses screen-level temperature to adjust the soil water content, allowing the use of high-resolution station data that may be available to a regional meteorological service.

The methods are tested in a suite of short-term weather forecasts performed with the Consortium for Small Scale Modeling (COSMO) model over the period September–November 2008, using the ECMWF Integrated Forecast System (IFS) model to provide the lateral boundary conditions. Extensive comparisons to observations show that substantial improvements in forecast skills are achievable with improved soil temperature initialization while a smaller additional benefit in the prediction of surface fluxes is possible with the soil moisture analysis. The analysis suggests that keeping the model prognostic variables close to equilibrium with the soil state, especially for temperature, is more relevant than correcting the soil moisture initial values. In particular, if a local soil analysis system is not available, it seems preferable to adopt an “open loop” strategy rather than the interpolation from the host global model analysis. This appears to be especially true for the COSMO model in its current operational configuration since the soil–vegetation–atmosphere transfer (SVAT) scheme of the ECMWF global host model and that of COSMO are radically diverse.

Corresponding author address: Francesca Di Giuseppe, Servizio IdroMeteoClima, ARPA, Viale Silvani 6, 40128 Bologna, Italy. E-mail: fdigiuseppe@arpa.emr.it

Abstract

Three diverse methods of initializing soil moisture and temperature in limited-area numerical weather prediction models are compared and assessed through the use of nonstandard surface observations to identify the approach that best combines ease of implementation, improvement in forecast skill, and realistic estimations of soil parameters. The first method initializes the limited-area model soil prognostic variables by a simple interpolation from a parent global model that is used to provide the lateral boundary conditions for the forecasts, thus ensuring that the limited-area model’s soil field cannot evolve far from the host model. The second method uses the soil properties generated by a previous limited-area model forecast, allowing the soil moisture to evolve over time to a new equilibrium consistent with the regional model’s hydrological cycle. The third method implements a new local soil moisture variational analysis system that uses screen-level temperature to adjust the soil water content, allowing the use of high-resolution station data that may be available to a regional meteorological service.

The methods are tested in a suite of short-term weather forecasts performed with the Consortium for Small Scale Modeling (COSMO) model over the period September–November 2008, using the ECMWF Integrated Forecast System (IFS) model to provide the lateral boundary conditions. Extensive comparisons to observations show that substantial improvements in forecast skills are achievable with improved soil temperature initialization while a smaller additional benefit in the prediction of surface fluxes is possible with the soil moisture analysis. The analysis suggests that keeping the model prognostic variables close to equilibrium with the soil state, especially for temperature, is more relevant than correcting the soil moisture initial values. In particular, if a local soil analysis system is not available, it seems preferable to adopt an “open loop” strategy rather than the interpolation from the host global model analysis. This appears to be especially true for the COSMO model in its current operational configuration since the soil–vegetation–atmosphere transfer (SVAT) scheme of the ECMWF global host model and that of COSMO are radically diverse.

Corresponding author address: Francesca Di Giuseppe, Servizio IdroMeteoClima, ARPA, Viale Silvani 6, 40128 Bologna, Italy. E-mail: fdigiuseppe@arpa.emr.it
Save
  • Beljaars, A., P. Viterbo, M. Miller, and A. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., 1976: A comprehensive parameterization of the atmospheric boundary layer for general circulation models. Ph.D. thesis, McGill University, Montreal, Quebec, Canada.

  • Bouttier, F., J. Mahfouf, and J. Noilhan, 1993: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part I: Sensitivity and calibration studies. J. Appl. Meteor., 32, 13351351.

    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1974: Climate and Life. Academic Press, 508 pp.

  • Cleveland, W., E. Grosse, W. Shyu, J. Chambers, and T. Hastie, 1991: Local regression models. Statistical Models in S, J. Chambers and T. Hastie, Eds., Wadsworth and Brooks/Cole, 309–376.

    • Search Google Scholar
    • Export Citation
  • Commission of the European Communities, 1995: CORINE land cover. European Environment Agency Tech. Rep., 162 pp. [Available online at http://reports.eea.europa.eu/COR0-landcover/en.]

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387.

    • Search Google Scholar
    • Export Citation
  • Crow, W., M. Drusch, and E. Wood, 2001: An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval. IEEE Trans. Geosci. Remote Sens., 39, 16221631.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp.

    • Search Google Scholar
    • Export Citation
  • Doms, G., J. Förstner, E. Heise, H. J. Herzog, M. Raschendorfer, R. Schrodin, T. Reinhardt, and G. Vogel, 2004: A description of the non-hydrostatic regional model LM. Part II: Physical parameterization. Consortium for Small Scale Modelling (COSMO), 139 pp.

    • Search Google Scholar
    • Export Citation
  • Douville, H., P. Viterbo, J. Mahfouf, and A. Beljaars, 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128, 17331756.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., and P. Viterbo, 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367.

  • Giard, D., and E. Bazile, 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 9971015.

    • Search Google Scholar
    • Export Citation
  • Hammer, R. M., 1970: Cloud development and distribution around Khartoum. Weather, 25, 411414.

  • Hess, R., 2001: Assimilation of screen-level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77, 145154.

  • Hess, R., M. Lange, and W. Wergen, 2008: Evaluation of the variational soil moisture assimilation scheme at Deutscher Wetterdienst. Quart. J. Roy. Meteor. Soc., 134, 14991512.

    • Search Google Scholar
    • Export Citation
  • Jacobs, C., and Coauthors, 2008: Evaluation of European Land Data Assimilation System (ELDAS) products using in situ observations. Tellus, 60A, 10231037.

    • Search Google Scholar
    • Export Citation
  • Lange, M., 2009: Parametrisation of the sensitivity DT2m/dw in soil moisture analysis. Deutscher Wetterdienst Tech. Rep. [Available from Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany.]

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Macpherson, B., B. Wright, W. Hand, and A. Maycock, 1996: The impact of MOPS moisture data in the U. K. Meteorological Office mesoscale data assimilation scheme. Mon. Wea. Rev., 124, 17461766.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30, 15341547.

  • Njoku, E., T. Jackson, V. Lakshmi, T. Chan, and S. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428.

  • Papale, D., and Coauthors, 2006: Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences, 3, 571583.

    • Search Google Scholar
    • Export Citation
  • Rhodin, A., F. Kucharski, U. Callies, D. Eppel, and W. Wergen, 1999: Variational analysis of effective soil moisture from screen-level atmospheric parameters: Application to a short-range weather forecast model. Quart. J. Roy. Meteor. Soc., 125, 24272448.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Vinnikov, G. Srinivasan, J. Entin, S. Hollinger, N. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Schrodin, R., and E. Heise, 2001: The multi-layer-version of the DWD soil model TERRA/LM. Consortium for Small-Scale Modelling (COSMO) Tech. Rep. 2, 17 pp. [Available from Deutscher Wetterdienst, Frankfurter Str. 135, AU6 63067 Offenbach, Germany.]

    • Search Google Scholar
    • Export Citation
  • Segal, M., R. Avissar, M. McCumber, and R. A. Pielke, 1988: Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci., 45, 22682293.

    • Search Google Scholar
    • Export Citation
  • Segal, M., R. Arritt, C. Clarck, R. Rabin, and J. Brown, 1995: Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain. Mon. Wea. Rev., 123, 383400.

    • Search Google Scholar
    • Export Citation
  • Smith, C., M. Lakhtakia, W. Capehart, and T. Carlson, 1994: Initialization of soil-water content in regional-scale atmospheric prediction models. Bull. Amer. Meteor. Soc., 75, 585593.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H.-W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the non-hydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Teuling, A., R. Uijlenhoet, B. van den Hurk, and S. Seneviratne, 2009: Parameter sensitivity in LSMs: An analysis using stochastic soil moisture models and ELDAS soil parameters. J. Hydrometeor., 10, 751765.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., and P. Viterbo, 2003: The Torne-Kalix PILPS 2 (e) experiment as a test bed for modifications to the ECMWF land surface scheme. Global Planet. Change, 38, 165173.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B. V., P. Viterbo, A. Beljaars, and A. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Van Wijk, W., and D. De Vries, 1966: Periodic temperature variations in a homogeneous soil. Physics of Plant Environment, 2nd ed. W. Van Wijk, Ed., North-Holland, 102–140.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748.

    • Search Google Scholar
    • Export Citation
  • Western, A., G. Blöschl, and R. Grayson, 1998: Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. J. Hydrol., 205, 2037.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 122 6
PDF Downloads 82 35 2