Life Cycle Study of a Diabatic Rossby Wave as a Precursor to Rapid Cyclogenesis in the North Atlantic—Dynamics and Forecast Performance

Maxi Boettcher Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

Search for other papers by Maxi Boettcher in
Current site
Google Scholar
PubMed
Close
and
Heini Wernli Institute for Atmospheric Physics, University of Mainz, Mainz, Germany, and Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Heini Wernli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The life cycle of a North Atlantic cyclone in December 2005 that included a rapid propagation phase as a diabatic Rossby wave (DRW) is investigated by means of operational analyses and deterministic forecasts from the ECMWF. A quasigeostrophic omega diagnostic has been applied to assess the impact of upper-level forcing during the genesis, propagation, and intensification phase, respectively. The system was generated in the Gulf of Mexico as a mesoscale convective vortex (MCV) influenced by vertical motion forcing from a nearby upper-level trough. The DRW propagation phase was characterized by a shallow, low-level, diabatically produced potential vorticity (PV) anomaly that rapidly propagated along the southern border of an intense baroclinic zone. No significant upper-level forcing could be identified during this phase of the development. Eventually, explosive intensification occurred as the region of vertical motion forced by an approaching upper-level trough reached the position of the DRW. The rapid intensification of 34 hPa in 24 h led to a mature extratropical cyclone in the central North Atlantic with marked frontal structures associated with a pronounced PV tower.

The performance of four operational deterministic ECMWF forecasts has been investigated for the DRW propagation and cyclone intensification. The forecasts showed a highly variable skill. Despite the fact that the DRW was initially well represented in all forecasts, two of them failed to capture the explosive intensification. By applying a DRW tracking tool, the low-level baroclinicity downstream of the DRW and the moisture supply to the south of the DRW could be identified as the key environmental parameters during DRW propagation. The subsequent cyclone intensification went wrong in two of the forecasts because of the missing interaction of the DRW and the upper-level trough. It is shown that this interaction can fail if the intensity of the DRW and/or the approaching upper-level wave are too weak, or in case of an erroneous structure of the upper-level trough leading to a phasing problem of the vertical interaction with the DRW. Therefore, the DRW intensification bears similar characteristics and forecast challenges as the extratropical reintensification of tropical cyclones.

Corresponding author address: Maxi Boettcher, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, D-55099 Mainz, Germany. E-mail: maxi.boettcher@env.ethz.ch

This article is included in the Third THORPEX International Science Symposium special collection.

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

The life cycle of a North Atlantic cyclone in December 2005 that included a rapid propagation phase as a diabatic Rossby wave (DRW) is investigated by means of operational analyses and deterministic forecasts from the ECMWF. A quasigeostrophic omega diagnostic has been applied to assess the impact of upper-level forcing during the genesis, propagation, and intensification phase, respectively. The system was generated in the Gulf of Mexico as a mesoscale convective vortex (MCV) influenced by vertical motion forcing from a nearby upper-level trough. The DRW propagation phase was characterized by a shallow, low-level, diabatically produced potential vorticity (PV) anomaly that rapidly propagated along the southern border of an intense baroclinic zone. No significant upper-level forcing could be identified during this phase of the development. Eventually, explosive intensification occurred as the region of vertical motion forced by an approaching upper-level trough reached the position of the DRW. The rapid intensification of 34 hPa in 24 h led to a mature extratropical cyclone in the central North Atlantic with marked frontal structures associated with a pronounced PV tower.

The performance of four operational deterministic ECMWF forecasts has been investigated for the DRW propagation and cyclone intensification. The forecasts showed a highly variable skill. Despite the fact that the DRW was initially well represented in all forecasts, two of them failed to capture the explosive intensification. By applying a DRW tracking tool, the low-level baroclinicity downstream of the DRW and the moisture supply to the south of the DRW could be identified as the key environmental parameters during DRW propagation. The subsequent cyclone intensification went wrong in two of the forecasts because of the missing interaction of the DRW and the upper-level trough. It is shown that this interaction can fail if the intensity of the DRW and/or the approaching upper-level wave are too weak, or in case of an erroneous structure of the upper-level trough leading to a phasing problem of the vertical interaction with the DRW. Therefore, the DRW intensification bears similar characteristics and forecast challenges as the extratropical reintensification of tropical cyclones.

Corresponding author address: Maxi Boettcher, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, D-55099 Mainz, Germany. E-mail: maxi.boettcher@env.ethz.ch

This article is included in the Third THORPEX International Science Symposium special collection.

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save
  • Berrisford, P., 1988: Potential vorticity in extratropical cyclones. Ph.D. thesis, University of Reading, 168 pp.

  • Bosart, L. F., 1981: The President’s Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., C. S. A. Davitt, and A. J. Thorpe, 1996: Attribution concepts applied to the omega equation. Quart. J. Roy. Meteor. Soc., 122, 19431962.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99115.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C., K. A. Browning, and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983: On the evolution of the QE II storm. Part I: Synoptic aspects. Mon. Wea. Rev., 111, 11371155.

  • Gyakum, J. R., 1991: Meteorological precursors to the explosive intensification of the QE II storm. Mon. Wea. Rev., 119, 11051131.

  • Gyakum, J. R., P. J. Roebber, and T. A. Bullock, 1992: The role of antecedent surface vorticity development as a conditioning process in explosive cyclone intensification. Mon. Wea. Rev., 120, 14651489.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Kenzelmann, P., 2005: Dynamik und Klimatologie von diabatischen Rossby Wellen (Dynamics and climatology of diabatic Rossby waves). Diploma thesis, ETH Zurich, 90 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003.

    • Search Google Scholar
    • Export Citation
  • Mallet, I., J.-P. Cammas, P. Mascart, and P. Bechtold, 1999: Effects of cloud diabatic heating on the early development of the FASTEX IOP17 cyclone. Quart. J. Roy. Meteor. Soc., 125, 34393467.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude cyclogenesis. J. Atmos. Sci., 61, 754768.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725.

    • Search Google Scholar
    • Export Citation
  • Moore, R. W., M. T. Montgomery, and H. C. Davies, 2008: The integral role of a diabatic Rossby vortex in a heavy snowfall event. Mon. Wea. Rev., 136, 18781897.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Ritchie, E. A., and R. L. Elsberry, 2003: Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to reintensification. Mon. Wea. Rev., 131, 21122128.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135, 862876.

    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and R. S. Lindzen, 1991: Quasigeostrophic wave-CISK in an unbounded baroclinic shear. J. Atmos. Sci., 48, 7686.

  • Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877899.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 10191027.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (14–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405427.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 503 226 36
PDF Downloads 326 94 12