The Utility of Upper-Boundary Nesting in NWP

Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
,
Claude Girard Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Claude Girard in
Current site
Google Scholar
PubMed
Close
,
André Plante Development Division, Canadian Meteorological Centre, Meteorological Service of Canada, Dorval, Quebec, Canada

Search for other papers by André Plante in
Current site
Google Scholar
PubMed
Close
, and
Michel Desgagné Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Michel Desgagné in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions.

A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.

Corresponding author address: Ron McTaggart-Cowan, Numerical Weather Prediction Research Section, Environment Canada, 2121 Trans-Canada Highway, Floor 5, Dorval QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca

Abstract

The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions.

A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.

Corresponding author address: Ron McTaggart-Cowan, Numerical Weather Prediction Research Section, Environment Canada, 2121 Trans-Canada Highway, Floor 5, Dorval QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@ec.gc.ca
Save
  • Archambault, H. M., D. Keyser, and L. F. Bosart, 2010: Relationships beween large-scale regime transitions and major cool-season precipitation events in the northeastern United States. Mon. Wea. Rev., 138, 34543473.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 11231142.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Bélair, S., M. Roch, A. M. Leduc, P. A. Vaillancourt, S. Laroche, and J. Mailhot, 2009: Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operational system. Wea. Forecasting, 24, 690708.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 11321142.

  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 7199.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 2010: Stratospheric influences on tropospheric weather systems. J. Atmos. Sci., 67, 324344.

  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Coy, L., S. Eckermann, and K. Hoppel, 2009: Planetary wave breaking and tropospheric forcing as seen in the stratospheric sudden warming of 2006. J. Atmos. Sci., 66, 495507.

    • Search Google Scholar
    • Export Citation
  • Davis, C., 1992a: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428.

    • Search Google Scholar
    • Export Citation
  • Davis, C., 1992b: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411.

  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59, 271281.

  • Fillion, L., and Coauthors, 2010: The Canadian regional data assimilation and forecasting system. Wea. Forecasting, 25, 16451669.

  • Girard, C., A. Plante, S. Gravel, A. Qaddouri, S. Chamberland, L. Spacek, V. Lee, and M. Desgagné, 2010: GEM4.1: A non-hydrostatic atmospheric model in terrain-following vertical coordinate of the log-hydrostatic pressure type vertically discretized on a Charney–Phillips grid. Tech. Rep., CMC, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Hartley, D. E., J. T. Villarin, R. X. Black, and C. A. Davis, 1998: A new perspective on the dynamical link between the stratosphere and troposphere. Nature, 391, 471474.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678.

    • Search Google Scholar
    • Export Citation
  • Héreil, P., and R. Laprise, 1996: Sensitivity of internal gravity waves solutions to the time step of a semi-implicit semi-Lagrangian nonhydrostatic model. Mon. Wea. Rev., 124, 972999.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-P. F., 1980: Air parcel motions during a numerically simulated sudden stratospheric warming. J. Atmos. Sci., 37, 27682792.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Labitzke, K., 1978: On the different behaviour of the zonal harmonic height waves 1 and 2 during the winters 1970/71 and 1971/72. Mon. Wea. Rev., 106, 17041713.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197207.

  • Mahalov, A., M. Moustaoui, and V. Grubisic, 2009: Multi-scale simulations using WRF with vertical nesting and implicit relaxation: Case studies from T-REX. 10th Annual WRF User’s Workshop, Boulder, CO, UCAR.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 1998: Scientific description of RPN physics library—Version 3.6. Tech. Rep., 188 pp. [Available from Atmospheric Environment Service, 2121 Trans-Canada Hwy., Montreal, QC H9P 1J3, Canada.]

    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2010: Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophys. Res. Lett., 37, L22801, doi:10.1029/2010GL045237.

    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494.

  • McIntyre, M. E., 1982: How well do we understand the dynamics of sudden warimgs? J. Meteor. Soc. Japan, 60, 3765.

  • Met Office, cited 2005: Enhanced-resolution global model—13 December 2005. [Available online at http://badc.nerc.ac.uk/data/um/global_res_improvements.html.]

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1983: Short Period Climatic Variations: Collected Works of J. Namias. Vol. 3 (1975–1982), University of California, San Diego, 393 pp.

    • Search Google Scholar
    • Export Citation
  • NCEP, 2003: The GFS Atmospheric Model. NCEP Office Note 442, Tech. Rep. 442, Environmental Modeling Center, 14 pp.

  • Norton, W. A., 2003: Sensitivity of Northern Hemisphere surface climate to simulations of the stratospheric polar vortex. Geophys. Res. Lett., 30, 1627, doi:10.1029/2003GL016958.

    • Search Google Scholar
    • Export Citation
  • O’Neill, A., 2003: Sudden stratospheric warmings. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Academic Press, 1342–1353.

    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755.

  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1975: The stratospheric evolution of sudden warmings in 1969–74 determined from measured infrared radiation fields. J. Atmos. Sci., 32, 211224.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950a: Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus, 2, 196211.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950b: Blocking action in the middle troposphere and its effect upon regional climate. II. The climatology of blocking action. Tellus, 2, 275301.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441.

  • Ritchie, H., and M. Tanguay, 1996: A comparison of spatially averaged Eulerian and semi-Lagrangian treatements of mountains. Mon. Wea. Rev., 124, 167181.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1988: Irreversible wave-mean flow interactions in a mechanistic model of the stratosphere. J. Atmos. Sci., 45, 34133430.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., and Coauthors, 1937: Isentropic analysis. Bull. Amer. Meteor. Soc., 17, 201210.

  • Sassi, F., R. R. Garcia, D. Marsh, and K. W. Hoppel, 2010: The role of the middle atmosphere in simulations of the troposphere during Northern Hemisphere winter: Differences between high- and low-top models. J. Atmos. Sci., 67, 30483064.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., J. S. Scroggs, G. A. Pouliot, A. L. A. McKee-Burrows, M. Norman, V. Poojary, and Y.-M. Tsai, 2005: On the accuracy of semi-Lagrangian numerical simulation of internal gravity wave motion in the atmosphere. J. Meteor. Soc. Japan, 83, 851869.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2003: Tropospheric response to stratospheric degradation in a simple global circulation model. J. Atmos. Sci., 60, 18351846.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. J., C. Girard, R. Benoit, M. Desgagné, P. Pellerin, and A. V. Malevsky, 1998: A new dynamics kernel for the MC2 model. Atmos.–Ocean, 36, 241270.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. J., and J. M. Wallace, 2001: Regional climate impacts of the northern hemisphere annular mode. Science, 293, 8589.

  • Tung, K. K., and R. S. Linzen, 1979: A theory of stationary long waves. Part I: A simple theory of blocking. Mon. Wea. Rev., 107, 714734.

    • Search Google Scholar
    • Export Citation
  • Untch, A., and A. Simmons 1999: Increased stratospheric resolution in the ECMWF forecast system. ECMWF Newsletter, No. 82, ECMWF, Reading, United Kingdom, 2–8.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Waugh, D., W. Randel, S. Pawson, P. Newmann, and E. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC-MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 154 15
PDF Downloads 74 13 1