Impact of Resolution and Design on the U.S. Navy Global Ensemble Performance in the Tropics

Carolyn A. Reynolds Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
,
Justin G. McLay Naval Research Laboratory, Monterey, California

Search for other papers by Justin G. McLay in
Current site
Google Scholar
PubMed
Close
,
James S. Goerss Naval Research Laboratory, Monterey, California

Search for other papers by James S. Goerss in
Current site
Google Scholar
PubMed
Close
,
Efren A. Serra DeVine Consulting, Inc., Fremont, California

Search for other papers by Efren A. Serra in
Current site
Google Scholar
PubMed
Close
,
Daniel Hodyss Naval Research Laboratory, Monterey, California

Search for other papers by Daniel Hodyss in
Current site
Google Scholar
PubMed
Close
, and
Charles R. Sampson Naval Research Laboratory, Monterey, California

Search for other papers by Charles R. Sampson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of the U.S. Navy global atmospheric ensemble prediction system is examined with a focus on tropical winds and tropical cyclone tracks. Ensembles are run at a triangular truncation of T119, T159, and T239, with 33, 17, and 9 ensemble members, respectively, to evaluate the impact of resolution versus the number of ensemble member tradeoffs on ensemble performance. Results indicate that the T159 and T239 ensemble mean tropical cyclone track errors are significantly smaller than those of the T119 ensemble out to 4 days. For ensemble forecasts of upper- and lower-tropospheric tropical winds, increasing resolution has only a small impact on ensemble mean root-mean-square error for wind speed, but does improve Brier scores for 10-m wind speed at the 5 m s−1 threshold. In addition to the resolution tests, modifications to the ensemble transform initial perturbation methodology and inclusion of stochastic kinetic energy backscatter are also evaluated. Stochastic kinetic energy backscatter substantially increases the ensemble spread and improves Brier scores in the tropics, but for the most part does not significantly reduce ensemble mean tropical cyclone track error.

Corresponding author address: Carolyn Reynolds, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: carolyn.reynolds@nrlmry.navy.mil

Abstract

The performance of the U.S. Navy global atmospheric ensemble prediction system is examined with a focus on tropical winds and tropical cyclone tracks. Ensembles are run at a triangular truncation of T119, T159, and T239, with 33, 17, and 9 ensemble members, respectively, to evaluate the impact of resolution versus the number of ensemble member tradeoffs on ensemble performance. Results indicate that the T159 and T239 ensemble mean tropical cyclone track errors are significantly smaller than those of the T119 ensemble out to 4 days. For ensemble forecasts of upper- and lower-tropospheric tropical winds, increasing resolution has only a small impact on ensemble mean root-mean-square error for wind speed, but does improve Brier scores for 10-m wind speed at the 5 m s−1 threshold. In addition to the resolution tests, modifications to the ensemble transform initial perturbation methodology and inclusion of stochastic kinetic energy backscatter are also evaluated. Stochastic kinetic energy backscatter substantially increases the ensemble spread and improves Brier scores in the tropics, but for the most part does not significantly reduce ensemble mean tropical cyclone track error.

Corresponding author address: Carolyn Reynolds, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: carolyn.reynolds@nrlmry.navy.mil
Save
  • Berner, J., G. J. Schutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765.

  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Schutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126, 25032518.

  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883.

  • Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., 2000: Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea. Rev., 128, 11871193.

  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 10091016.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. M., C. Guard, J. Kossin, T. Marchok, B. Sampson, T. Smith, and N. Surgi, 2007: Operational guidance and skill in forecasting structure change. Proc. Sixth WMO Int. Workshop on Tropical Cyclones (IWTC-VI), San José, Costa Rica, WMO Tech. Doc. 1383. [Available online at http://severe.worldweather.org./iwtc/.]

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Parameterizations, Reading, United Kingdom, ECMWF, 59–79.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., and P. M. Finocchio, 2010: On the ability of global ensemble prediction systems to predict tropical cyclone track probabilities. Wea. Forecasting, 25, 659680.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., and C. A. Reynolds, 2009: Two alternative implementations of the ensemble-transform (ET) analysis-perturbation scheme: The ET with extended cycling intervals, and the ET without cycling. Quart. J. Roy. Meteor. Soc., 135, 12001213.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2007: The ensemble transform scheme adapted for the generation of stochastic perturbations. Quart. J. Roy. Meteor. Soc., 133, 12571266.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., J. A. Ridout, and T. F. Hogan, 2004: Recent modifications of the Emanuel convective scheme in the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 132, 12541268.

    • Search Google Scholar
    • Export Citation
  • Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709731.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. Teixeira, and J. G. McLay, 2008: Impact of stochastic convection on the ensemble transform. Mon. Wea. Rev., 136, 45174526.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304312.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., and T. N. Palmer, 2004: The use of high-resolution numerical simulations of tropical circulation to calibrate stochastic physics schemes. Proc. ECMWF/CLIVAR Simulation and Prediction of Intra-seasonal Variability with Emphasis on the MJO, Reading, United Kingdom, ECMWF, 83–102.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke, 2008: A local ensemble transform Kalman filter for the NCEP global model. Tellus, 60A, 113130.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and T. F. Hogan, 2002: Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterizations. J. Climate, 15, 12611276.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330.

  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operation forecast system. Tellus, 60A, 6279.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Williford, C. E., T. N. Krisnamurti, R. C. Torres, S. Cocke, Z. Christidis, and T. S. Vijaya Kumar, 2003: Real-time multimodel superensemble forecasts of Atlantic tropical systems of 1999. Mon. Wea. Rev., 131, 18781894.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki, 2009: Typhoon ensemble prediction system developed at the Japan Meteorological Agency. Mon. Wea. Rev., 137, 25922604.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 113 7
PDF Downloads 153 62 3