Sensitivity of Dynamical Intraseasonal Prediction Skills to Different Initial Conditions

Xiouhua Fu IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Xiouhua Fu in
Current site
Google Scholar
PubMed
Close
,
Bin Wang IPRC, SOEST, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
June-Yi Lee IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by June-Yi Lee in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang NCEP/CPC, Camp Springs, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
, and
Li Gao IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii, and National Meteorological Center, China Meteorological Administration, Beijing, China

Search for other papers by Li Gao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Predictability of intraseasonal oscillation (ISO) relies on both initial conditions and lower boundary conditions (or atmosphere–ocean interaction). The atmospheric reanalysis datasets are commonly used as initial conditions. Here, the biases of three reanalysis datasets [the NCEP reanalysis 1 and 2 (NCEP-R1 and -R2) and the ECMWF Re-Analysis Interim (ERA-Interim)] in describing ISO were briefly revealed and the impacts of these biases as initial conditions on ISO prediction skills were assessed. A signal-recovery method is proposed to improve ISO prediction.

Although all three reanalyses underestimate the intensity of the equatorial eastward-propagating ISO, the overall quality of the ERA-Interim is better than the NCEP-R1 and -R2. When these reanalyses are used as initial conditions in the ECHAM4-University of Hawaii hybrid coupled model (UH-HCM), skillful ISO prediction reaches only about 1 week for both the 850-hPa zonal winds (U850) and rainfall over Southeast Asia and the global tropics. An enhanced nudging of the divergence field is shown to significantly improve the initial conditions, resulting in an extension of the skillful rainfall prediction by 2–4 days and U850 prediction by 5–10 days.

After recovering the ISO signals in the original reanalyses, the resultant initial conditions contain ISO strength closer to the observed, whereas the rainfall spatial pattern correlation in the ERA-Interim reanalysis drops. The resultant ISO prediction skills, however, are consistently extended for all the NCEP and ERA-Interim reanalyses. Using these signal-recovered reanalyses as initial conditions, the boreal summer ISO prediction skill measured with the Wheeler–Hendon index reaches 14 days. The U850 and rainfall prediction skills, respectively, reach 23 and 18 days over Southeast Asia. It is also found that small-scale synoptic weather disturbances in initial conditions generally increase ISO prediction skills. Both the UH-HCM and NCEP Climate Forecast System (CFS) suffer the prediction barrier over the Maritime Continent.

School of Ocean and Earth Science and Technology Contribution Number 8154 and International Pacific Research Center Contribution Number 783.

Corresponding author address: Dr. Joshua Xiouhua Fu, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East West Rd., POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu

Abstract

Predictability of intraseasonal oscillation (ISO) relies on both initial conditions and lower boundary conditions (or atmosphere–ocean interaction). The atmospheric reanalysis datasets are commonly used as initial conditions. Here, the biases of three reanalysis datasets [the NCEP reanalysis 1 and 2 (NCEP-R1 and -R2) and the ECMWF Re-Analysis Interim (ERA-Interim)] in describing ISO were briefly revealed and the impacts of these biases as initial conditions on ISO prediction skills were assessed. A signal-recovery method is proposed to improve ISO prediction.

Although all three reanalyses underestimate the intensity of the equatorial eastward-propagating ISO, the overall quality of the ERA-Interim is better than the NCEP-R1 and -R2. When these reanalyses are used as initial conditions in the ECHAM4-University of Hawaii hybrid coupled model (UH-HCM), skillful ISO prediction reaches only about 1 week for both the 850-hPa zonal winds (U850) and rainfall over Southeast Asia and the global tropics. An enhanced nudging of the divergence field is shown to significantly improve the initial conditions, resulting in an extension of the skillful rainfall prediction by 2–4 days and U850 prediction by 5–10 days.

After recovering the ISO signals in the original reanalyses, the resultant initial conditions contain ISO strength closer to the observed, whereas the rainfall spatial pattern correlation in the ERA-Interim reanalysis drops. The resultant ISO prediction skills, however, are consistently extended for all the NCEP and ERA-Interim reanalyses. Using these signal-recovered reanalyses as initial conditions, the boreal summer ISO prediction skill measured with the Wheeler–Hendon index reaches 14 days. The U850 and rainfall prediction skills, respectively, reach 23 and 18 days over Southeast Asia. It is also found that small-scale synoptic weather disturbances in initial conditions generally increase ISO prediction skills. Both the UH-HCM and NCEP Climate Forecast System (CFS) suffer the prediction barrier over the Maritime Continent.

School of Ocean and Earth Science and Technology Contribution Number 8154 and International Pacific Research Center Contribution Number 783.

Corresponding author address: Dr. Joshua Xiouhua Fu, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East West Rd., POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu
Save
  • Achuthavarier, D., and V. Krishnamurthy, 2009: Daily modes of South Asian summer monsoon variability in the NCEP Climate Forecast System. COLA Tech. Rep. 287, 43 pp. [Available online at ftp://grads.iges.org/pub/ctr/CTR287_ms.pdf.]

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86, 387402.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian Oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., 2008: NASA’s Modern Era Retrospective-analysis for research and applications: Integrating earth observations. Earthzine. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and J. C. Alpert, 1990: Systematic errors in the annual and intraseasonal variations of the planetary-scale divergent circulation in NMC medium-range forecasts. Mon. Wea. Rev., 118, 26072623.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and S.-P. Weng, 1999: Interannual and intraseasonal variations in monsoon depressions and their westward-propagating predecessors. Mon. Wea. Rev., 127, 10051020.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2001: A coupled modeling study of the annual cycle of Pacific cold tongue. Part I: Simulation and sensitivity experiments. J. Climate, 14, 765779.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere–ocean model. Mon. Wea. Rev., 132, 26282649.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and L. Tao, 2006: Satellite data reveal the 3-D moisture structure of Tropical Intraseasonal Oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, doi:10.1029/2005GL025074.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Yang, Q. Bao, and B. Wang, 2008a: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, Q. Bao, P. Liu, and B. Yang, 2008b: Experimental dynamical forecast of an MJO event observed during TOGA-COARE period. Atmos. Oceanic Sci. Lett., 1, 2428.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, Q. Bao, P. Liu, and J.-Y. Lee, 2009: Impacts of initial conditions on monsoon intraseasonal forecasting. Geophys. Res. Lett., 36, L08801, doi:10.1029/2009GL037166.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newmann, J. D. Glick, and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and W. Shi, 2001: Intercomparison of the principle modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40-50-day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in Southern Taiwan. Geophys. Res. Lett., 37, L08805, doi:10.1029/2010GL042761.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 18191832.

    • Search Google Scholar
    • Export Citation
  • Jeuken, A. B. M., P. C. Siegmund, L. C. Heijboer, J. Feichter, and L. Bengtsson, 1996: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation. J. Geophys. Res., 101 (D12), 16 93916 950.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. A., D. E. Waliser, M. C. Wheeler, C. Jones, M. I. Lee, and S. D. Schubert, 2008: Assessing the skill of an all-season statistical forecast model for the Madden–Julian oscillation. Mon. Wea. Rev., 136, 19401956.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, J.-K. E. Schemm, and W.K.-M. Lau, 2000: Prediction skill of the Madden–Julian Oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273289.

    • Search Google Scholar
    • Export Citation
  • Jones, C., L. M. V. Carvalho, R. W. Higgins, D. E. Waliser, and J.-K. E. Schemm, 2004: A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17, 20782095.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and H.-H. Kim, 2010: Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J. Climate, 23, 23682378.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kim, H. M., C. D. Hoyos, P. J. Webster, and I. S. Kang, 2008: Sensitivity of MJO simulation and predictability to sea surface temperature variability. J. Climate, 21, 53045317.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., P. M. Inness, H. Weller, and J. M. Slingo, 2008: The importance of high-frequency sea-surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Climate, 21, 61196140.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., M. Subramaniam, G. Daughenbaugh, D. Oosterhof, and J. H. Xue, 1992: One-month forecast of wet and dry spells of the monsoon. Mon. Wea. Rev., 120, 11911223.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and F. C. Chang, 1992: Tropical intraseasonal oscillation and its prediction by the NMC operational model. J. Climate, 5, 13651378.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate model. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1993: The Essence of Chaos. University of Washington Press, 227 pp.

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian Oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Mitovski, T., I. Folkins, K. von Salzen, and M. Sigmond, 2010: Temperature, relative humidity, and divergence response to high rainfall events in the tropics: Observations and models. J. Climate, 23, 36133625.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., M. A. Shapiro, J. M. Slingo, and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56, 204211.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003: A study of subseasonal predictability. Mon. Wea. Rev., 131, 17151732.

    • Search Google Scholar
    • Export Citation
  • Nobre, C., G. P. Brasseur, M. A. Shapiro, M. Lahsen, G. Brunet, A. J. Busalacchi, K. Hibbard, and K. Noone, 2010: Addressing the complexity of the Earth system. Bull. Amer. Meteor. Soc., 91, 13891396.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1995: Extended version of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo. 206, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and B. P. Kirtman, 2008: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. O. Roads, 2005: Long-range predictability in the tropics. Part II: 30–60-day variability. J. Climate, 18, 634650.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, cited 2009: MERRA—NASA’s reanalysis overview of the system. NASA GSFC, Global Modeling and Assimilation Office. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker377.pdf.]

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep. 218, 90 pp.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Seo, K.-H., J.-K. E. Schemm, C. Jones, and S. Moorthi, 2005: Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dyn., 25, 265284.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W.-Q. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and Coauthors, 2010: An Earth-system prediction initiative for the twenty-first century. Bull. Amer. Meteor. Soc., 91, 13771388.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1999: Intraseasonal surface fluxes in the tropical western Pacific and Indian Oceans from NCEP reanalysis. Mon. Wea. Rev., 127, 678693.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 25472572.

  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 728731.

  • Shukla, J., R. Hagedorn, B. Hoskins, J. Kinter, J. Marotzke, M. Miller, T. N. Palmer, and J. Slingo, 2009: Strategies—Revolution in climate prediction: A declaration at the world modeling summit for climate prediction. Bull. Amer. Meteor. Soc., 90, 175178.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf.]

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and H. Annamalai, 2008: Coupled model simulations of boreal-summer intraseasonal (30-50-day) variability. Part I: Systematic errors and caution on use of metrics. Climate Dyn., 31, 345372.

    • Search Google Scholar
    • Export Citation
  • Sun, G. W., and B. D. Chen, 1994: Clustering of Tibetan Plateau vortex by atmospheric intraseasonal oscillation. Sci. Atmos. Sin., 18, 113121.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., 2007: Improved atmospheric soundings and error estimates from analysis of AIRS/AMSU data. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, M. D. Goldberg et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6684), 66840M-66840M-12, doi:10.1117/12.734336.

    • Search Google Scholar
    • Export Citation
  • Tian, B. J., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., M. Pena, and A. Vintzileos, 2007: Bridging the gap between weather and climate forecasting: Research priorities for intraseasonal prediction. Bull. Amer. Meteor. Soc., 88, 14271429.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Uppala, S., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/115.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vintzileos, A., and H.-L. Pan, cited 2007: Subseasonal prediction with the NCEP-CFS: Forecast skill and prediction barriers for tropical intraseasonal oscillations. NOAA. [Available online at http://www.cpc.ncep.noaa.gov/products/outreach/proceedings/cdw32_proceedings/Augustin_Vintzileos.ppt.]

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2009: Dynamical extended-range prediction of early monsoon rainfall over India. Mon. Wea. Rev., 137, 14801492.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., C. Jones, J.-K. E. Schemm, and N. E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12, 19181939.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003a: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003b: AGCM simulations of intraseasonal variability associated with the Asian Summer Monsoon. Climate Dyn., 21, 423446.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2006: The experimental MJO prediction project. Bull. Amer. Meteor. Soc., 87, 425431.

  • Waliser, D. E., and Coauthors, cited 2009: Year of Tropical Convection (YOTC) science plan. [Available online at http://www.ucar.edu/yotc/index.html.]

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer and Praxis Publishing, 787 pp.

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., T. Li, and P. Chang, 1995: An intermediate model of the tropical Pacific Ocean. J. Phys. Oceanogr., 25, 15991616.

  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CLiPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/S00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W. Q., M. Y. Chen, and A. Kumar, 2009: Impacts of ocean surface on the northward propagation of the boreal-summer intraseasonal oscillation in the NCEP climate forecast system. J. Climate, 22, 65616576.

    • Search Google Scholar
    • Export Citation
  • Weaver, S., W. Wang, and A. Kumar, 2010: Representation of MJO variability in the NCEP Climate Forecast System. Preprints, 22nd Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc., 4A.2. [Available online at http://ams.confex.com/ams/90annual/techprogram/paper_161235.htm.]

    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., T. Zhu, and B. H. Yan, 2007: Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain-affected radiances from microwave observations for hurricane vortex analysis. J. Atmos. Sci., 64, 39103925.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden-Julian Oscillation: Implications for the MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Zagar, N., E. Andersson, and M. Fisher, 2005: Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quart. J. Roy. Meteor. Soc., 131, 9871011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 446 105 34
PDF Downloads 185 46 7