Orogenic Convection in Subtropical South America as Seen by the TRMM Satellite

Kristen L. Rasmussen Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kristen L. Rasmussen in
Current site
Google Scholar
PubMed
Close
and
Robert A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme orogenic convective storms in southeastern South America are divided into three categories: storms with deep convective cores, storms with wide convective cores, and storms containing broad stratiform regions. Data from the Tropical Rainfall Measuring Mission satellite’s Precipitation Radar show that storms with wide convective cores are the most frequent, tending to originate near the Sierra de Cordoba range. Downslope flow at upper levels caps a nocturnally enhanced low-level jet, thus preventing convection from breaking out until the jet hits a steep slope of terrain, such as the Sierra de Cordoba Mountains or Andean foothills, so that the moist low-level air is lifted enough to release the instability and overcome the cap. This capping and triggering is similar to the way intense convection is released near the northwestern Himalayas. However, the intense storms with wide convective cores over southeastern South America are unlike their Himalayan counterparts in that they exhibit leading-line/trailing-stratiform organization and are influenced by baroclinic troughs more similar to storms east of the Rocky Mountains in the United States. Comparison of South American storms containing wide convective cores with storms in other parts of the world contributes to a global understanding of how major mountain ranges influence precipitating cloud systems.

Corresponding author address: Kristen Lani Rasmussen, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: kristen@atmos.washington.edu

Abstract

Extreme orogenic convective storms in southeastern South America are divided into three categories: storms with deep convective cores, storms with wide convective cores, and storms containing broad stratiform regions. Data from the Tropical Rainfall Measuring Mission satellite’s Precipitation Radar show that storms with wide convective cores are the most frequent, tending to originate near the Sierra de Cordoba range. Downslope flow at upper levels caps a nocturnally enhanced low-level jet, thus preventing convection from breaking out until the jet hits a steep slope of terrain, such as the Sierra de Cordoba Mountains or Andean foothills, so that the moist low-level air is lifted enough to release the instability and overcome the cap. This capping and triggering is similar to the way intense convection is released near the northwestern Himalayas. However, the intense storms with wide convective cores over southeastern South America are unlike their Himalayan counterparts in that they exhibit leading-line/trailing-stratiform organization and are influenced by baroclinic troughs more similar to storms east of the Rocky Mountains in the United States. Comparison of South American storms containing wide convective cores with storms in other parts of the world contributes to a global understanding of how major mountain ranges influence precipitating cloud systems.

Corresponding author address: Kristen Lani Rasmussen, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: kristen@atmos.washington.edu
Save
  • Altinger de Schwarzkopf, M. L., and L. C. Russo, 1982: Severe storms and tornadoes in Argentina. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 59–62.

    • Search Google Scholar
    • Export Citation
  • Anabor, V., D. J. Stensrud, and O. L. L. de Moraes, 2008: Serial upstream-propagating mesoscale convective system events over southeastern South America. Mon. Wea. Rev., 136, 30873105.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. 1997 Int. Geoscience and Remote Sensing Symp. (IGARSS ’97)—Remote Sensing: A Scientific Vision for Sustainable Development, Vol. 4, Singapore, IEEE, 1633–1635.

    • Search Google Scholar
    • Export Citation
  • Borque, P., P. Salio, M. Nicolini, and Y. G. Skabar, 2010: Environment associated with deep moist convection under SALLJ conditions: A case study. Wea. Forecasting, 25, 970984.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67-68, 7394.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. Rotunno, and J. M. Fritsch, 2007: Roll circulations in the convective region of a simulated squall line. J. Atmos. Sci., 64, 12491266.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286.

  • Cecil, D. J., 2011: Relating passive 37-GHz scattering to radar profiles in strong convection. J. Appl. Meteor. Climatol., 50, 233240.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2009: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes into rainfall across subtropical South America. J. Climate, 22, 45904605.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1998: Summertime incursions of midlatitude air into subtropical and tropical South America. Mon. Wea. Rev., 126, 27132733.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000a: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., R. Meneghini, J. Awaka, T. Kozu, and K. Okamoto, 2000b: Rain-profiling algorithm for TRMM Precipitation Radar data. Adv. Space Res., 25, 973976.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. A. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submontly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891.

    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., 1956: The radar observations of mature prefrontal squall lines in the midwestern United States. Summary, Lectures Held during the VIth Congress of OSTIV, St. Yan, France, Organisation Scientifique et Technique du Vol à Voile, 3 pp.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271.

    • Search Google Scholar
    • Export Citation
  • Medina, S., R. A. Houze Jr., A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616.

    • Search Google Scholar
    • Export Citation
  • Nascimento, E. L., and C. A. Doswell III, 2005: The need for improved documentation of severe thunderstorms and tornadoes in South America. Preprints, Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.18. [Available online at http://ams.confex.com/ams/techprogram/paper_102247.htm.]

    • Search Google Scholar
    • Export Citation
  • Nascimento, E. L., and I. P. V. O. Marcelino, 2005: Preliminary analysis of the 3 January 2005 tornadoes in Criciuma/SC (in Portuguese). Bull. Braz. Meteor. Soc., 29, 3344.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. R. Durran, and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791.

  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., M. Nicolini, and S. C. Chou, 2000: Model characterization of the South American low-level flow during the 1997–1998 spring–summer season. Climate Dyn., 16, 867881.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1947: The structure of the intertropical front over NW India during the SW monsoon. Quart. J. Roy. Meteor. Soc., 73, 346369.

    • Search Google Scholar
    • Export Citation
  • Schiesser, H.-H., R. A. Houze Jr., and H. Huntrieser, 1995: The mesoscale structure of severe precipitation systems in Switzerland. Mon. Wea. Rev., 123, 20702097.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., F. A. Norte, P. Satyamurty, and S. C. Chou, 2003a: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Wea. Forecasting, 18, 481501.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003b: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117133.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing-stratiform precipitation. Mon. Wea. Rev., 115, 28692889.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparisons with observations. Mon. Wea. Rev., 117, 273304.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613.

  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1339 254 30
PDF Downloads 760 156 8