A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations

Filipe Aires Laboratoire de Météorologie Dynamique/IPSL/CNRS, Université de Paris VI, Jussieu, France

Search for other papers by Filipe Aires in
Current site
Google Scholar
PubMed
Close
,
Francis Marquisseau Laboratoire de Météorologie Dynamique/IPSL/CNRS, Université de Paris VI, Jussieu, France

Search for other papers by Francis Marquisseau in
Current site
Google Scholar
PubMed
Close
,
Catherine Prigent Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France

Search for other papers by Catherine Prigent in
Current site
Google Scholar
PubMed
Close
, and
Geneviève Sèze Laboratoire de Météorologie Dynamique/IPSL/CNRS, Université de Paris VI, Jussieu, France

Search for other papers by Geneviève Sèze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A statistical cloud classification and cloud mask algorithm is developed based on Advanced Microwave Sounding Unit (AMSU-A and -B) microwave (MW) observations. The visible and infrared data from the Meteosat Third Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) are used to train the microwave classifier. The goal of the MW algorithms is not to fully reproduce this MSG-SEVIRI cloud classification, as the MW observations do not have enough information on clouds to reach this level of precision. The objective is instead to obtain a stand-alone MW cloud mask and classification algorithm that can be used efficiently in forthcoming retrieval schemes of surface or atmospheric parameters from microwave satellite observations. This is an important tool over both ocean and land since the assimilation of the MW observations in the operational centers is independent from the other satellite observations.

Clear sky and low, medium, and opaque–high clouds can be retrieved over ocean and land at a confidence level of more than 80%. An information content analysis shows that AMSU-B provides significant information over both land and ocean, especially for the classification of medium and high clouds, whereas AMSU-A is more efficient over ocean when discriminating clear situations and low clouds.

Additional affiliation: Laboratoire de lEtude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France.

Corresponding author address: F. Aires, CNRS/IPSL/Laboratoire de Meteorologie Dynamique, Université Pierre et Marie Curie, Case 99, 4, Place Jussieu, F-75252 Paris, CEDEX 05, France. E-mail: filipe.aires@lmd.jussieu.fr

Abstract

A statistical cloud classification and cloud mask algorithm is developed based on Advanced Microwave Sounding Unit (AMSU-A and -B) microwave (MW) observations. The visible and infrared data from the Meteosat Third Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) are used to train the microwave classifier. The goal of the MW algorithms is not to fully reproduce this MSG-SEVIRI cloud classification, as the MW observations do not have enough information on clouds to reach this level of precision. The objective is instead to obtain a stand-alone MW cloud mask and classification algorithm that can be used efficiently in forthcoming retrieval schemes of surface or atmospheric parameters from microwave satellite observations. This is an important tool over both ocean and land since the assimilation of the MW observations in the operational centers is independent from the other satellite observations.

Clear sky and low, medium, and opaque–high clouds can be retrieved over ocean and land at a confidence level of more than 80%. An information content analysis shows that AMSU-B provides significant information over both land and ocean, especially for the classification of medium and high clouds, whereas AMSU-A is more efficient over ocean when discriminating clear situations and low clouds.

Additional affiliation: Laboratoire de lEtude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France.

Corresponding author address: F. Aires, CNRS/IPSL/Laboratoire de Meteorologie Dynamique, Université Pierre et Marie Curie, Case 99, 4, Place Jussieu, F-75252 Paris, CEDEX 05, France. E-mail: filipe.aires@lmd.jussieu.fr
Save
  • Ackerman, S., K. Strabala, W. Menzel, R. Frey, C. Moeller, and L. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 (D24), 32 14132 157.

    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, W. Rossow, and M. Rothstein, 2001: A new neural network approach including first-guess for retrieval of atmospheric water vapour, cloud liquid water path, surface temperature and emissivities over land from satellite microwave observations. J. Geophys. Res., 106 (D14), 14 88714 907.

    • Search Google Scholar
    • Export Citation
  • Alishouse, J., S. Snyder, V. Jennifer, and R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816.

    • Search Google Scholar
    • Export Citation
  • Ambroise, C., G. Sze, F. Badran, and S. Thiria, 2000: Hierarchical clustering of self-organizing maps for cloud classification. Neurocomputing, 30, 4752.

    • Search Google Scholar
    • Export Citation
  • Baum, B., V. Tovinkere, J. Titlow, and R. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36, 15191540.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., 1996: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Coakley, J., 1983: Properties of multilayered cloud systems from satellite imagery. J. Geophys. Res., 88 (C15), 10 81810 828.

  • Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2, 303314.

  • Derrien, M., and H. L. Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732.

  • Derrien, M., and H. L. Gléau, 2010: Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int. J. Remote Sens., 31, 17651780.

    • Search Google Scholar
    • Export Citation
  • Desbois, M., G. Sèze, and G. Szejwach, 1982: Automatic classification of clouds on Meteosat imagery: Application to high-level clouds. J. Appl. Meteor., 21, 401412.

    • Search Google Scholar
    • Export Citation
  • Engelen, R., and G. Stephens, 1999: Characterization of water vapor retrievals from infrared TOVS radiances and microwave SSM/T-2 radiances. Quart. J. Roy. Meteor. Soc., 125, 331351.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., F. Weng, N. Grody, and A. Basist, 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891905.

    • Search Google Scholar
    • Export Citation
  • Frey, R., S. Ackerman, Y. Liu, K. Strabala, H. Zhang, J. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072.

    • Search Google Scholar
    • Export Citation
  • Govaerts, Y., A. Arriaga, and J. Schmetz, 2001: Operational vicarious calibration of the MSG/SEVIRI solar channels. Adv. Space Res., 28, 2130, doi:10.1016/S0273-1177(01)00269-1.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T., and S. Christopher, 2002: Effect of cold clouds on satellite measurements near 183 GHz. J. Geophys. Res., 107, 4170, doi:10.1029/2000JD000258.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T., G. Stephens, T. V. Haar, and D. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98 (D10), 18 47118 488.

    • Search Google Scholar
    • Export Citation
  • Holz, R., S. Ackerman, F. Nagle, R. Frey, S. Dutcher, R. Kuehn, M. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hong, F., and G. Heygster, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110, D05205, doi:10.1029/2004JD004949.

    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359366.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10 mm window region. J. Meteor. Soc. Japan, 63, 8899.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and W. Rossow, 1997: Detection of cirrus overlapping low-level clouds. J. Geophys. Res., 102, 17271737.

  • Krzanowski, W. J., 1988: Principles of Multivariate Analysis. Clarendon Press, 563 pp.

  • Miller, S., and W. Emery, 1997: An automated neural network cloud classifier for use over land and ocean surfaces. J. Appl. Meteor., 36, 13461362.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., J. Huang, B. Lin, Y. Yi, R. Arduini, T.-F. Fan, J. Ayers, and G. Mace, 2007: Ice cloud properties in ice-over-water cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and TRMM Microwave Imager data. J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C., J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. Rossow, 2001: Joint characterization of the vegetation by satellite observations from visible to microwavelengths: A sensitivity analysis. J. Geophys. Res., 106, 20 66520 685.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15721584.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Papa, F. Aires, W. Rossow, and E. Matthews, 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112, D12107, doi:10.1029/2006JD007847.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., E. Jaumouille, F. Chevallier, and F. Aires, 2008: A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates. IEEE Trans. Geosci. Remote Sens., 46, 344352.

    • Search Google Scholar
    • Export Citation
  • Radnoti, G., P. Bauer, A. McNally, C. Cardinali, S. Healy, and P. de Rosnay, 2010: ECMWF study on the impact of future developments of the space-based observing system on numerical weather prediction. ECMWF Tech. Memo. 638, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Rossow, W., and Coauthors, 1985: ISCCP Cloud Algorithm Intercomparison. J. Climate Appl. Meteor., 24, 877903.

  • Rumelhart, D., G. Hinton, and R. Williams, 1986: Learning internal representations by error propagation. Parallel Distributed Processing, D. Rumelhart and J. McClelland, Eds., Vol. I, The MIT Press, 318–362.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., 1986: An automated scheme for the removal of cloud contamination from AVHRR radiances over western Europe. Int. J. Remote Sens., 7, 867886.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to the Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992.

    • Search Google Scholar
    • Export Citation
  • Seber, G., 1984: Multivariate Observations. J. Wiley and Sons, 686 pp.

  • Sèze, G., and H. Pawlowska, 2001: Cloud cover analysis with Meteosat-5 during INDOEX. J. Geophys. Res., 106 (D22), 28 41528 426.

  • Sèze, G., H. L. Gléau, M. Derrien, B. Six, and J. Pelon, 2009: Evaluation of the global cloud cover parameters obtained from geostationary data in the frame of the Megha-Tropiques mission with CALIPSO lidar observations. Proc. 2009 EUMETSAT Meteorological Satellite Conf., Bath, United Kingdom, EUMETSAT. [Available online at http://www.eumetsat.int/Home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/SP_201001515267179?l=en.]

    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. Ferraro, G. Poe, X. Li, and N. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 80868096.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 81 4
PDF Downloads 105 40 0