On the Characteristic Height Scales of the Hurricane Boundary Layer

Jun A. Zhang Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Robert F. Rogers NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
,
David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
, and
Frank D. Marks Jr. NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Frank D. Marks Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, data from 794 GPS dropsondes deployed by research aircraft in 13 hurricanes are analyzed to study the characteristic height scales of the hurricane boundary layer. The height scales are defined in a variety of ways: the height of the maximum total wind speed, the inflow layer depth, and the mixed layer depth. The height of the maximum wind speed and the inflow layer depth are referred to as the dynamical boundary layer heights, while the mixed layer depth is referred to as the thermodynamical boundary layer height. The data analyses show that there is a clear separation of the thermodynamical and dynamical boundary layer heights. Consistent with previous studies on the boundary layer structure in individual storms, the dynamical boundary layer height is found to decrease with decreasing radius to the storm center. The thermodynamic boundary layer height, which is much shallower than the dynamical boundary layer height, is also found to decrease with decreasing radius to the storm center. The results also suggest that using the traditional critical Richardson number method to determine the boundary layer height may not accurately reproduce the height scale of the hurricane boundary layer. These different height scales reveal the complexity of the hurricane boundary layer structure that should be captured in hurricane model simulations.

Corresponding author address: Dr. Jun Zhang, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: jun.zhang@noaa.gov

Abstract

In this study, data from 794 GPS dropsondes deployed by research aircraft in 13 hurricanes are analyzed to study the characteristic height scales of the hurricane boundary layer. The height scales are defined in a variety of ways: the height of the maximum total wind speed, the inflow layer depth, and the mixed layer depth. The height of the maximum wind speed and the inflow layer depth are referred to as the dynamical boundary layer heights, while the mixed layer depth is referred to as the thermodynamical boundary layer height. The data analyses show that there is a clear separation of the thermodynamical and dynamical boundary layer heights. Consistent with previous studies on the boundary layer structure in individual storms, the dynamical boundary layer height is found to decrease with decreasing radius to the storm center. The thermodynamic boundary layer height, which is much shallower than the dynamical boundary layer height, is also found to decrease with decreasing radius to the storm center. The results also suggest that using the traditional critical Richardson number method to determine the boundary layer height may not accurately reproduce the height scale of the hurricane boundary layer. These different height scales reveal the complexity of the hurricane boundary layer structure that should be captured in hurricane model simulations.

Corresponding author address: Dr. Jun Zhang, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: jun.zhang@noaa.gov
Save
  • Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci., 42, 800822.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 12401255.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631643.

  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., G. D. Emmitt, B. Brummer, M. A. LeMone, and S. Nicholls, 1980: The structure of a fair weather boundary layer based on the results of several measurement strategies. Mon. Wea. Rev., 108, 349364.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 287–304.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and intensity of category five Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232036.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. Simpson, 1987: Thermodynamic budget diagram for the hurricane subcloud layer. J. Atmos. Sci., 44, 842848.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetry numerical model simulations. Mon. Wea. Rev., 137, 17701789.

    • Search Google Scholar
    • Export Citation
  • Carrier, G. F., 1971: Swirling flow boundary layers. J. Fluid Mech., 49, 133144.

  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Blasck, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136, 19902005.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat fluxes. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49, 784789.

  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex. A numerical and theoretical study. Geophys. Norv., 7, 116.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321344.

  • Frank, W. M., 1977a: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135.

  • Frank, W. M., 1977b: The structure and energetics of the tropical cyclone II. Dynamics and energetics. Mon. Wea. Rev., 105, 11361150.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112, 24012420.

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1969: The thickness of the planetary boundary layer. Atmos. Environ., 3, 519536.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Holtslag, A. A. M., E. van Meijgaard, and W. C. de Rooij, 1995: A comparison of boundary layer diffusion schemes in unstable conditions over land. Bound.-Layer Meteor., 76, 6995.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681285.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the Hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the Hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136A, 16861699, doi:10.1002/qj.667.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quart. J. Roy. Meteor. Soc., 136A, 17001711, doi:10.1002/qj.685.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501.

    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. A. Zhang, F. D. Marks, and J. Gamache, 2010: Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon. Wea. Rev., 138, 36563670.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1981: Modeling the depth of the stable boundary layer. Bound.-Layer Meteor., 21, 319.

  • Marks, F. D., Jr., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. Aberson, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimate. Bull. Amer. Meteor. Soc., 87, 13351347.

    • Search Google Scholar
    • Export Citation
  • Moss, M. S., 1978: Low-level turbulence structure in the vicinity of a hurricane. Mon. Wea. Rev., 106, 841849.

  • Moss, M. S., and F. J. Merceret, 1976: A note on several low-layer features of Hurricane Eloise (1975). Mon. Wea. Rev., 104, 967971.

  • Nicholls, S., 1985: Aircraft observations of the Ekman layer during the Joint Air–Sea Interaction experiment. Quart. J. Roy. Meteor. Soc., 111, 391426.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and C. J. Readings, 1979: Aircraft observations of the structure on the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105, 785802.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37, 20512067.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 421427.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2005: Instabilities in hurricane-like boundary layers. Dyn. Atmos. Oceans, 40, 209236.

  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer-core boundary layer structure. Mon. Wea. Rev., 137, 36513674.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340.

  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and Coauthors, 2010: The 2010 Hurricane Field Program Plan. NOAA/AOML, 104 pp. [Available online at http://www.aoml.noaa.gov/hrd/HFP2010/HFP2010_part1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788.

    • Search Google Scholar
    • Export Citation
  • Schneider, R., and G. M. Barnes, 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133, 32433259.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and J. D. Kepert, 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136A, 16651670, doi:10.1002/qj.679.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136A, 16711685, doi:10.1002/qj.687.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spinup revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., 1982: Toward parameterization of the stable boundary layer. J. Appl. Meteor., 21, 713.

  • Willoughby, H. E., and M. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 16001612.

    • Search Google Scholar
    • Export Citation
  • Yin, B., and B. Albrecht, 2000: Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Climate, 13, 15741592.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. A. Bruke, M. Zhou, C. Fairall, N. A. Bond, and D. H. Lenschow, 2004: Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J. Climate, 17, 41594170.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., J. A. Zhang, and F. J. Masters, 2010: Wavelet analysis of turbulence in the hurricane surface layer during landfalls. J. Atmos. Sci., 67, 37933805.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall line circulation. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1904 709 82
PDF Downloads 1318 375 31