• Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and H. H. Hendon, 1989: Downstream development in the Southern Hemisphere monsoon during FGGE/WMONEX. Mon. Wea. Rev., 117, 14581470.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1991: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wave driving. J. Atmos. Sci., 48, 236263.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 32923307.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 15851601.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 572586.

  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

  • Fu, B., T. Li, M. S. Peng, and F. Weng, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM–93. Mon. Wea. Rev., 124, 26252643.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479.

  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143.

  • Molinari, J., 2004: Paradigms of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 85, 662663.

  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010a: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010b: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Islands during the years of 1956 and 1958. J. Meteor. Soc. Japan, 50, 7184.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 121, 20272043.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, doi:10.1029/2008GL035586.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre-Hurricane Felix (2007). Part I: The role of the wave critical layer. J. Atmos. Sci., 67, 17111729.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre-Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2007: MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones. Bull. Amer. Meteor. Soc., 88, 11871196.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 4 4 4

Application of the Marsupial Paradigm to Tropical Cyclone Formation from Northwestward-Propagating Disturbances

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 NorthWest Research Associates, Bellevue, Washington, and Naval Postgraduate School, Monterey, California
  • | 3 Naval Postgraduate School, Monterey, California
Restricted access

Abstract

A wave-tracking algorithm is developed for northwestward-propagating waves that, on occasion, play a role in tropical cyclogenesis over the western oceans. To obtain the Lagrangian flow structure, the frame of reference is translated obliquely at the same propagation speed with the precursor disturbance. Trajectory analysis suggests that streamlines in the obliquely translated frame of reference can be used to approximate flow trajectories. The algorithm was applied to Super Typhoon Nakri (2008), Tropical Cyclone Erika (2009), and a few other examples. Diagnoses of meteorological analyses and satellite-derived moisture and precipitation fields show that the marsupial framework for tropical cyclogenesis in tropical easterly waves is relevant also for northwestward-propagating disturbances as are commonly observed in the tropical western Atlantic, the Gulf of Mexico, and the western North Pacific. Finally, it is suggested that analysis of the global model data and satellite observations in the marsupial framework can provide useful guidance on early tropical cyclone advisories.

Corresponding author address: Zhuo Wang, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801. E-mail: zhuowang@illinois.edu

Abstract

A wave-tracking algorithm is developed for northwestward-propagating waves that, on occasion, play a role in tropical cyclogenesis over the western oceans. To obtain the Lagrangian flow structure, the frame of reference is translated obliquely at the same propagation speed with the precursor disturbance. Trajectory analysis suggests that streamlines in the obliquely translated frame of reference can be used to approximate flow trajectories. The algorithm was applied to Super Typhoon Nakri (2008), Tropical Cyclone Erika (2009), and a few other examples. Diagnoses of meteorological analyses and satellite-derived moisture and precipitation fields show that the marsupial framework for tropical cyclogenesis in tropical easterly waves is relevant also for northwestward-propagating disturbances as are commonly observed in the tropical western Atlantic, the Gulf of Mexico, and the western North Pacific. Finally, it is suggested that analysis of the global model data and satellite observations in the marsupial framework can provide useful guidance on early tropical cyclone advisories.

Corresponding author address: Zhuo Wang, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801. E-mail: zhuowang@illinois.edu
Save