• Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective storm. J. Atmos. Sci., 38, 16161642.

  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. M. Chen, P. A. Harr, and L. E. Carr, 1996: Northwestern-propagating wave patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 22452266.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875.

  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S.-Y. Wang, M.-C. Yen, and W. A. Gallus Jr., 2004: Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific. Wea. Forecasting, 19, 776785.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466484.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., and R. L. Elsberry, 2006: Model sensitivities in numerical simulations of the formation of Typhoon Robyn (1993). Terr. Atmos. Oceanic Sci., 17, 5389.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672.

  • Fang, J., and F. Zhang, 2011: Evolution of multi-scale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981a: Convective driven mesoscale weather systems aloft. Part I: Observation. J. Appl. Meteor., 20, 919.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981b: Convective driven mesoscale weather systems aloft. Part II: Numerical simulations. J. Appl. Meteor., 20, 2026.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769.

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1996: Structure of a mesoscale convective system embedded in Typhoon Robyn during TCM-93. Mon. Wea. Rev., 124, 634652.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., M. S. Kalafsky, and R. L. Elsberry, 1996: Environmental conditions prior to formation of a midget tropical cyclone during TCM-93. Mon. Wea. Rev., 124, 16931710.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and M. T. Montgomery, 2006: Rapid scan views of convectively generated mesovortices in sheared Tropical Cyclone Gustav (2002). Wea. Forecasting, 21, 10411050.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kieu, C. Q., and D.-L. Zhang, 2008: Genesis of tropical storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part I: Observational and modeling analyses. J. Atmos. Sci., 65, 34193432.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effect on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 20062022.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479.

  • Lin, Y., and F. Zhang, 2008: Tracing mesoscale gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65, 24022415.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian Oscillation. Science, 287, 20022004.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, WMO/TD 693, R. L. Elsberry, Ed., World Meteorological Organization, 63–105.

    • Search Google Scholar
    • Export Citation
  • Menard, R. D., and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 12371261.

    • Search Google Scholar
    • Export Citation
  • Miller, D., and J. M. Fritsch, 1991: Mesoscale convective complexes in the western Pacific region. Mon. Wea. Rev., 119, 29782992.

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W.-G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations in the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605637.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 55–91.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 30773090.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63, 30913113.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 26032622.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhang, D.-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 19131943.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and J. M. Fritsch, 1987: Numerical simulation of the meso-scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex. J. Atmos. Sci., 44, 25932612.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

Numerical Study on the Formation of Typhoon Ketsana (2003). Part I: Roles of the Mesoscale Convective Systems

View More View Less
  • 1 Chinese Academy of Meteorological Sciences, and National Meteorological Center, Beijing, China
  • | 2 Department of Environment and Geography, and Climate Futures Research Centre, Macquarie University, Sydney, Australia
  • | 3 National Meteorological Center, Beijing, China
Restricted access

Abstract

The effects of multiple mesoscale convective systems (MCSs) on the formation of Typhoon Ketsana (2003) are analyzed in this study. Numerical simulations using the Weather Research and Forecasting (WRF) model with assimilation of Quick Scatterometer (QuikSCAT) and Special Sensor Microwave Imager (SSM/I) oceanic winds and total precipitable water are performed. The WRF model simulates well the large-scale features, the convective episodes associated with the MCSs and their periods of development, and the formation time and location of Ketsana. With the successive occurrence of MCSs, midlevel average relative vorticity is strengthened through generation of mesoscale convective vortices (MCVs) mainly via the vertical stretching mechanism. Scale separation shows that the activity of the vortical hot tower (VHT)-type meso-γ-scale vortices correlated well with the development of the MCSs. These VHTs have large values of positive relative vorticity induced by intense low-level convergence, and thus play an important role in the low-level vortex enhancement with aggregation of VHTs as one of the possible mechanisms.

Four sensitivity experiments are performed to analyze the possible different roles of the MCSs during the formation of Ketsana by modifying the vertical relative humidity profile in each MCS and consequently the strength of convection within. The results show that the development of an MCS depends substantially on that of the prior ones through remoistening of the midtroposphere, and thus leading to different scenarios of system intensification during the tropical cyclone (TC) formation. The earlier MCSs are responsible for the first stage vortex enhancement, and depending on the location can affect quite largely the simulated formation location. The extreme convection within the last MCS before formation largely determines the formation time.

Corresponding author address: Kevin Cheung, Dept. of Environment and Geography, Macquarie University, Sydney, NSW 2109, Australia. E-mail: kevin.cheung@mq.edu.au

Abstract

The effects of multiple mesoscale convective systems (MCSs) on the formation of Typhoon Ketsana (2003) are analyzed in this study. Numerical simulations using the Weather Research and Forecasting (WRF) model with assimilation of Quick Scatterometer (QuikSCAT) and Special Sensor Microwave Imager (SSM/I) oceanic winds and total precipitable water are performed. The WRF model simulates well the large-scale features, the convective episodes associated with the MCSs and their periods of development, and the formation time and location of Ketsana. With the successive occurrence of MCSs, midlevel average relative vorticity is strengthened through generation of mesoscale convective vortices (MCVs) mainly via the vertical stretching mechanism. Scale separation shows that the activity of the vortical hot tower (VHT)-type meso-γ-scale vortices correlated well with the development of the MCSs. These VHTs have large values of positive relative vorticity induced by intense low-level convergence, and thus play an important role in the low-level vortex enhancement with aggregation of VHTs as one of the possible mechanisms.

Four sensitivity experiments are performed to analyze the possible different roles of the MCSs during the formation of Ketsana by modifying the vertical relative humidity profile in each MCS and consequently the strength of convection within. The results show that the development of an MCS depends substantially on that of the prior ones through remoistening of the midtroposphere, and thus leading to different scenarios of system intensification during the tropical cyclone (TC) formation. The earlier MCSs are responsible for the first stage vortex enhancement, and depending on the location can affect quite largely the simulated formation location. The extreme convection within the last MCS before formation largely determines the formation time.

Corresponding author address: Kevin Cheung, Dept. of Environment and Geography, Macquarie University, Sydney, NSW 2109, Australia. E-mail: kevin.cheung@mq.edu.au
Save