• Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490.

  • Côté, J., S. Gravel, M. Roch, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., 2001: Alternative implementations of the semi-Lagrangian semi-implicit schemes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 127, 27872802.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and P. A. Reinecke, 2004: Instability in a class of explicit two-time-level semi-Lagrangian schemes. Quart. J. Roy. Meteor. Soc., 130, 365369.

    • Search Google Scholar
    • Export Citation
  • Gear, W. C., 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Inc., 253 pp.

  • Hack, J. J., and R. Jakob, 1992: Description of a global shallow water model based on the spherical transform method. NCAR Tech. Note TN-343+STR, 39 pp.

    • Search Google Scholar
    • Export Citation
  • Heikes, R., and D. A. Randall, 1995: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 18621880.

    • Search Google Scholar
    • Export Citation
  • Hortal, M., 2002: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart. J. Roy. Meteor. Soc., 128, 16711687.

    • Search Google Scholar
    • Export Citation
  • Jakob, R., J. J. Hack, and D. L. Williamson, 1993: Solutions to the shallow water test set using the spectral transform method. NCAR Tech. Note TN-388+STR, 82 pp.

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., 2005: A fully-implicit semi-Lagrangian hydrostatic model of atmospheric dynamics. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., P1.84. [Available online at http://www.ams.confex.com/ams/pdfpapers/94016.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., 2011: An explicit time-difference scheme with an Adams–Bashforth predictor and a trapezoidal corrector. Preprints, 24th Conf. on Weather Analysis and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., P488. [Available online at http://ams.confex.com/ams/91Annual/webprogram/Handout/Paper179779/AMS2011_P488_Kar_.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kar, S. K., R. P. Turco, C. R. Mechoso, and A. Arakawa, 1994: A locally one-dimensional semi-implicit scheme for global gridpoint shallow-water models. Mon. Wea. Rev., 122, 205222.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1965: On the use of implicit and iterative methods for the time integration of the wave equation. Mon. Wea. Rev., 93, 3346.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Ritchie, H., 1988: Application of the semi-Lagrangian method to a spectral model of the shallow-water equations. Mon. Wea. Rev., 116, 15871598.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., and A.-M. Leduc, 1994: Analysis and experiments with a slow-start procedure. Mon. Wea. Rev., 122, 729744.

  • Robert, A. J., 1966: The integration of a low-order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237244.

    • Search Google Scholar
    • Export Citation
  • Robert, A. J., 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.–Ocean, 19, 3546.

  • Robert, A. J., 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan, 60, 319325.

    • Search Google Scholar
    • Export Citation
  • Saltzman, B., 1962: Finite amplitude free convection as an initial value problem—I. J. Atmos. Sci., 19, 329341.

  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223.

    • Search Google Scholar
    • Export Citation
  • Suda, R., 2005: Fast spherical harmonic transform routine FLTSS applied to the shallow water test set. Mon. Wea. Rev., 133, 634648.

  • Takano, K., and M. G. Wurtele, 1982: A fourth order energy and potential enstrophy conserving difference scheme. Rep. AFGL-TR-82-0205, Department of Atmospheric Science, University of California, Los Angeles, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1997: TVD schemes, positive schemes, and the universal limiter. Mon. Wea. Rev., 125, 19901993.

  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC-MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 11 11 11

An Explicit Time-Difference Scheme with an Adams–Bashforth Predictor and a Trapezoidal Corrector

View More View Less
  • 1 I. M. Systems Group, Inc., Rockville, Maryland
Restricted access

Abstract

A new predictor-corrector time-difference scheme that employs a second-order Adams–Bashforth scheme for the predictor and a trapezoidal scheme for the corrector is introduced. The von Neumann stability properties of the proposed Adams–Bashforth trapezoidal scheme are determined for the oscillation and friction equations. Effectiveness of the scheme is demonstrated through a number of time integrations using finite-difference numerical models of varying complexities in one and two spatial dimensions. The proposed scheme has useful implications for the fully implicit schemes currently employed in some semi-Lagrangian models of the atmosphere.

Corresponding author address: Dr. Sajal K. Kar, W/NP2 RM 207, WWBG, 5200 Auth Rd., Camp Springs, MD 20746-4304. E-mail: sajal.kar@noaa.gov

Abstract

A new predictor-corrector time-difference scheme that employs a second-order Adams–Bashforth scheme for the predictor and a trapezoidal scheme for the corrector is introduced. The von Neumann stability properties of the proposed Adams–Bashforth trapezoidal scheme are determined for the oscillation and friction equations. Effectiveness of the scheme is demonstrated through a number of time integrations using finite-difference numerical models of varying complexities in one and two spatial dimensions. The proposed scheme has useful implications for the fully implicit schemes currently employed in some semi-Lagrangian models of the atmosphere.

Corresponding author address: Dr. Sajal K. Kar, W/NP2 RM 207, WWBG, 5200 Auth Rd., Camp Springs, MD 20746-4304. E-mail: sajal.kar@noaa.gov
Save