• Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117.

  • Chen, G. T.-J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884891.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, and B. Cui, 1998: A modeling case study of heavy rainstorms along the mei-yu front. Mon. Wea. Rev., 126, 23302351.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140.

    • Search Google Scholar
    • Export Citation
  • Ding, Y.-H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142.

  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807.

  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79, 285299.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech Note NCAR/TN-398+STR, 138 pp. [Available from NCAR Publication Office, P.O. Box 3000, Boulder, CO 80307-3000.]

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205.

  • Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather-radar displays in midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 14441472.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952.

    • Search Google Scholar
    • Export Citation
  • Kato, T., 2006: Structure of the band-shaped precipitation system inducing the heavy rainfall observed over northern Kyushu, Japan on 29 June 1999. J. Meteor. Soc. Japan, 84, 129153.

    • Search Google Scholar
    • Export Citation
  • Kato, T., and H. Goda, 2001: Formation and maintenance processes of a stationary band-shaped heavy rainfall observed in Niigata on 4 August 1998. J. Meteor. Soc. Japan, 79, 899924.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424.

    • Search Google Scholar
    • Export Citation
  • Liao, J., and Z. Tan, 2005: Numerical simulation of a heavy rainfall event along the Meiyu front: Influences of different scale weather systems (in Chinese). Acta Meteor. Sin., 63, 771789.

    • Search Google Scholar
    • Export Citation
  • Liu, H., D.-L. Zhang, and B. Wang, 2010: Impact of horizontal resolution on the regional climate simulations of the Summer 1998 extreme rainfall along the Yangtze-River Basin. J. Geophys. Res., 115, D12115, doi:10.1029/2009JD012746.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., W.-K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the mei-yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 327.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory of long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277.

    • Search Google Scholar
    • Export Citation
  • Sun, J.-H., H.-G. Zhou, and S.-X. Zhao, 2006: An observational study of mesoscale convective systems producing severe heavy rainfall in the Huaihe River Basin during 3-4 July 2003 (in Chinese). Chin. J. Atmos. Sci., 30, 11031118.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean Sci., 4, 3572.

  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Ni, 2006: Diagnostic analysis and numerical simulation of a mesoscale torrential rainsystem in the Huaihe valley during the rainy season in 2003 (in Chinese). Acta Meteor. Sin., 64, 734742.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382.

  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β-scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 19131943.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and K. Gao, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations, and stratiform precipitation. Mon. Wea. Rev., 117, 20672094.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., H.-R. Chang, N. L. Seaman, T. T. Warner, and J. M. Fritsch, 1986: A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev., 114, 13301339.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., E.-Y. Hsie, and M. W. Moncrieff, 1988: A comparison of explicit and implicit predictions of convective and stratiform precipitating weather systems with a meso-β-scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 3160.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., K. Gao, and D.-B. Parsons, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part I: Model verification. Mon. Wea. Rev., 117, 960994.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., J. S. Kain, J. M. Fritsch, and K. Gao, 1994: Comments on “Parameterization of convective precipitation in mesoscale numerical models: A critical review.” Mon. Wea. Rev., 122, 22222231.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., S. Zhang, and S. Weaver, 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194209.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., A. S. Wang, Z. Z. Ji, and W. L. Zhang, 2006: Influence of different precipitation parameterization schemes on a simulated “03.7” heavy rainfall case (in Chinese). Chin. J. Atmos. Sci., 30, 441452.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., D.-L. Zhang, and A. Wang, 2009: Numerical simulation of torrential rainfall and vortical hot towers in a midlatitude mesoscale convective system. Atmos. Oceanic Sci. Lett., 2, 188192.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 10 10 10

Subkilometer Simulation of a Torrential-Rain-Producing Mesoscale Convective System in East China. Part I: Model Verification and Convective Organization

View More View Less
  • 1 Key Laboratory of Meteorological Disaster and College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

A nocturnal torrential-rain-producing mesoscale convective system (MCS) occurring during the mei-yu season of July 2003 in east China is studied using conventional observations, surface mesoanalysis, satellite and radar data, and a 24-h multinested model simulation with the finest grid spacing of 444 m. Observational analyses reveal the presence of several larger-scale conditions that were favorable for the development of the MCS, including mei-yu frontal lifting, moderate cold advection aloft and a moist monsoonal flow below, and an elongated old cold dome left behind by a previously dissipated MCS.

Results show that the model could reproduce the evolution of the dissipating MCS and its associated cold outflows, the triggering of three separate convective storms over the remnant cold dome and the subsequent organization into a large MCS, and the convective generation of an intense surface meso-high and meso-β-scale radar reflectivity morphologies. In particular, the model reproduces the passage of several heavy-rain-producing convective bands at the leading convective line and the trailing stratiform region, leading to the torrential rainfall at nearly the right location. However, many of the above features are poorly simulated or missed when the finest model grid uses either 1.33- or 4-km grid spacing. Results indicate the important roles of isentropic lifting of moist monsoonal air over the cold dome in triggering deep convection, a low-level jet within an elevated moist layer in maintaining conditional instability, and the repeated formation and movement of convective cells along the same path in producing the torrential rainfall.

Corresponding author address: Dr. Da-Lin Zhang, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu

Abstract

A nocturnal torrential-rain-producing mesoscale convective system (MCS) occurring during the mei-yu season of July 2003 in east China is studied using conventional observations, surface mesoanalysis, satellite and radar data, and a 24-h multinested model simulation with the finest grid spacing of 444 m. Observational analyses reveal the presence of several larger-scale conditions that were favorable for the development of the MCS, including mei-yu frontal lifting, moderate cold advection aloft and a moist monsoonal flow below, and an elongated old cold dome left behind by a previously dissipated MCS.

Results show that the model could reproduce the evolution of the dissipating MCS and its associated cold outflows, the triggering of three separate convective storms over the remnant cold dome and the subsequent organization into a large MCS, and the convective generation of an intense surface meso-high and meso-β-scale radar reflectivity morphologies. In particular, the model reproduces the passage of several heavy-rain-producing convective bands at the leading convective line and the trailing stratiform region, leading to the torrential rainfall at nearly the right location. However, many of the above features are poorly simulated or missed when the finest model grid uses either 1.33- or 4-km grid spacing. Results indicate the important roles of isentropic lifting of moist monsoonal air over the cold dome in triggering deep convection, a low-level jet within an elevated moist layer in maintaining conditional instability, and the repeated formation and movement of convective cells along the same path in producing the torrential rainfall.

Corresponding author address: Dr. Da-Lin Zhang, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu
Save