• Bister, M., , and K. A. Emanuel, 1997: The Genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., , and G. M. Lackmann, 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone. Mon. Wea. Rev., 133, 19131937.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Ferreira, N. R., , and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Guinn, T. A., , and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403.

  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S., , C.D. Thorncroft, , K. Hodges, , and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Kerns, B., , K. Greene, , and E. Zipser, 2008: Four years of tropical ERA-40 vorticity maxima tracks. Part I: Climatology and vertical vorticity structure. Mon. Wea. Rev., 136, 43014319.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., , and D.-L. Zhang, 2009: Genesis of Tropical Storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part II: Roles of vortex merger and ambient potential vorticity. J. Atmos. Sci., 66, 19801996.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , J.-H. Chen, , R. T. Williams, , and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in the Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 10351050.

    • Search Google Scholar
    • Export Citation
  • Li, T., , B. Fu, , X. Ge, , B. Wang, , and M. Peng, 2003: Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30, 2122, doi:10.1029/2003GL018556.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31, 156179.

  • Magnusdottir, G., , and C.-C. Wang, 2008: Intertropical convergence zones during the active season in daily data. J. Atmos. Sci., 65, 24252436.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., , G. D. Deane, , L. F. Bosart, , C. A. Davis, , and T. J. Galarneau, 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., , J. C. McWilliams, , and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159, doi:10.1017/S0022112087001150.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , L. L. Lussier III, , R. W. Moore, , and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment. Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, doi:10.5194/acp-10-9879-2010.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., , L. A. Avilla, , and J.-G. Jiing, 1998: Atlantic tropical systems of 1994 and 1995: A comparison of a quiet season to a near-record-breaking one. Mon. Wea. Rev., 126, 11061123.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , B. D. McNoldy, , and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1977: Tropical storm formation from easterly waves: A criterion for development. J. Atmos. Sci., 34, 10071022.

  • Simpson, J., , E. Ritchie, , G. J. Holland, , J. Halverson, , and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Snyder, A. D., , Z. Pu, , and Y. Zhu, 2010: Tracking and verification of east Atlantic tropical cyclone genesis in the NCEP global ensemble: Case studies during the NASA African Monsoon Multidisciplinary Analyses. Wea. Forecasting, 25, 13971411.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., , M. T. Montgomery, , and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 30773090.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., , M. T. Montgomery, , N. E. Davidson, , and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63, 30913113.

    • Search Google Scholar
    • Export Citation
  • Tsai, Y.-M., , H.-C. Kuo, , and W. H. Schubert, 2010: Filamentation time diagnosis of thinning troughs and cutoff lows. Mon. Wea. Rev., 138, 23272335.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , M. T. Montgomery, , and T. J. Dunkerton, 2010: Genesis of Pre-Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 4
PDF Downloads 13 13 1

Evolution of African Easterly Waves in Potential Vorticity Fields

View More View Less
  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.

Corresponding author address: Bryce Tyner, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: bptyner@ncsu.edu

Abstract

The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.

Corresponding author address: Bryce Tyner, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: bptyner@ncsu.edu
Save