• Arnott, N. R., , Y. P. Richardson, , J. M. Wurman, , and E. M. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311335.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., , R. M. Wakimoto, , and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, 60 pp.

  • Benjamin, S. G., , and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 307329.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 2, Observations and Theory of Weather Systems, Oxford University Press, 594 pp.

  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052.

  • Buban, M. S., , C. L. Ziegler, , E. N. Rasmussen, , and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258279.

  • Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 26392654.

  • Coniglio, M. C., , D. J. Stensrud, , and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., , and E. Fedorovich, 2008: A case study of convective boundary layer development during IHOP_2002: Numerical simulations compared to observations. Mon. Wea. Rev., 136, 23052320.

    • Search Google Scholar
    • Export Citation
  • Corcos, G. M., , and F. S. Sherman, 1984: The mixing layer: Deterministic models of a turbulent flow. Part 1. Introduction and the two-dimensional flow. J. Fluid Mech., 139, 2965.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., , T. L. Clark, , and M. W. Moncrieff, 1991: The Denver cyclone. Part II: Interaction with the convective boundary layer. J. Atmos. Sci., 48, 21092126.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1985: Comments on “A kinematic analysis of frontogenesis associated with a nondivergent vortex.” J. Atmos. Sci., 42, 20732075.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83 (C4), 18891903.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., 1984: A kinematic analysis of frontogenesis associated with a nondivergent vortex. J. Atmos. Sci., 41, 12421248.

  • Doswell, C. A., 1985: Reply. J. Atmos. Sci., 42, 20762079.

  • Drazin, P. G., , and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 525 pp.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534.

  • Goldstein, S., 1931: On the stability of superposed streams of fluids of different densities. Proc. Roy. Soc. London, 132, 524548.

  • Grasso, L. D., 2000: A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev., 128, 28162834.

  • Kanak, K., 2008: Vortical structures in convective boundary layers and implications for the initiation of deep convection. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 18.3. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142080.htm.]

  • Kanak, K., , D. K. Lilly, , and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc., 126A, 27892810.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., , and Y. Fujiyoshi, 2005: Shear instability wave along a snowband: Instability structure, evolution, and energetics derived from dual-Doppler radar data. J. Atmos. Sci., 62, 351370.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 1997a: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 1997b: The numerical simulation of non-supercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54, 23872415.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , C. A. Finley, , and R. B. Wilhelmson, 2000: Simulating deep convection initiation by misocyclones. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., P2.3. [Available online at https://ams.confex.com/ams/Sept2000/techprogram/paper_16291.htm.]

  • Majcen, M., , P. Markowski, , Y. Richardson, , D. Dowell, , and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , C. L. Ziegler, , and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., , Y. P. Richardson, , and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768.

    • Search Google Scholar
    • Export Citation
  • McCalla, T. R., 1967: Introduction to Numerical Methods and FORTRAN Programming. Wiley, 359 pp.

  • Miao, Q., , and B. Geerts, 2007: Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Wea. Rev., 135, 41614184.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., , and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336.

  • Murphey, H. V., , R. M. Wakimoto, , C. Flamant, , and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., , R. B. Wilhelmson, , L. J. Wicker, , and C. L. Ziegler, 2004: Numerical simulation of the interaction between the dryline and horizontal convective rolls. Mon. Wea. Rev., 132, 17921812.

    • Search Google Scholar
    • Export Citation
  • Pietrycha, A. E., , and E. N. Rasmussen, 2004: Finescale surface observations of the dryline: A mobile mesonet perspective. Wea. Forecasting, 19, 10751088.

    • Search Google Scholar
    • Export Citation
  • Pozrikidis, C., , and J. J. L. Higdon, 1985: Nonlinear Kelvin-Helmholtz instability of a finite vortex layer. J. Fluid Mech., 157, 225263.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1880: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., XI, 5770.

  • Rosenhead, L., 1931: The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. London, 134, 170192.

  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense frontal zone. J. Meteor., 12, 542552.

  • Saucier, W. J., 1955: Principles of Meteorological Analysis. Dover Publications, Inc., 438 pp.

  • Schultz, D. M., , D. Keyser, , and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , C. C. Weiss, , and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709.

  • Shapiro, A., , C. K. Potvin, , and G. Jidong, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106.

    • Search Google Scholar
    • Export Citation
  • Sun, W., , and C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci., 49, 16061619.

  • Wakimoto, R. M., , and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 11131140.

  • Wakimoto, R. M., , and N. T. Atkins, 1996: Observations on the origins of rotation: The Newcastle tornado during VORTEX 94. Mon. Wea. Rev., 124, 384407.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , C. Liu, , and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372392.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , R. A. Peterson, , and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., , H. B. Bluestein, , and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O project (IHOP). Mon. Wea. Rev., 134, 273293.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and W. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , W. J. Martin, , R. A. Pielke, , and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263285.

  • Ziegler, C. L., , T. J. Lee, , and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , E. N. Rasmussen, , T. R. Shepherd, , A. I. Watson, , and J. M. Straka, 2001: The evolution of low-level rotation in the 29 May 1994 Newcastle–Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 13391368.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , M. S. Buban, , and E. N. Rasmussen, 2007: A Lagrangian objective analysis technique for assimilating in situ observations with multiple-radar-derived airflow. Mon. Wea. Rev., 135, 24172442.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 12
PDF Downloads 15 15 2

Simulation of Dryline Misovortex Dynamics and Cumulus Formation

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Department of Meteorology, The Pennsylvania State University, State College, Pennsylvania
© Get Permissions
Restricted access

Abstract

A dryline and misocyclones have been simulated in a cloud-resolving model by applying specified initial and time-dependent lateral boundary conditions obtained from analyses of the 22 May 2002 International H2O Project (IHOP_2002) dataset. The initial and lateral boundary conditions were obtained from a combination of the time–spaced Lagrangian analyses for temperature and moisture with horizontal velocities from multiple-Doppler wind syntheses. The simulated dryline, horizontal dry-convective rolls (HCRs) and open cells (OCCs), misocyclones, and cumulus clouds are similar to the corresponding observed features. The misocyclones move northward at nearly the mean boundary layer (BL) wind speed, rotate dryline gradients owing to their circulations, and move the local dryline eastward via their passage. Cumuli develop along a secondary dryline, along HCR and OCC segments between the primary and secondary drylines, along HCR and OCC segments that have moved over the dryline, and within the dryline updraft. After the initial shearing instability develops, misocyclogenesis proceeds from tilting and stretching of vorticity by the persistent secondary dryline circulation. The resulting misocyclone evolution is discussed.

Corresponding author address: Michael S. Buban, Forecast Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.buban@noaa.gov

Abstract

A dryline and misocyclones have been simulated in a cloud-resolving model by applying specified initial and time-dependent lateral boundary conditions obtained from analyses of the 22 May 2002 International H2O Project (IHOP_2002) dataset. The initial and lateral boundary conditions were obtained from a combination of the time–spaced Lagrangian analyses for temperature and moisture with horizontal velocities from multiple-Doppler wind syntheses. The simulated dryline, horizontal dry-convective rolls (HCRs) and open cells (OCCs), misocyclones, and cumulus clouds are similar to the corresponding observed features. The misocyclones move northward at nearly the mean boundary layer (BL) wind speed, rotate dryline gradients owing to their circulations, and move the local dryline eastward via their passage. Cumuli develop along a secondary dryline, along HCR and OCC segments between the primary and secondary drylines, along HCR and OCC segments that have moved over the dryline, and within the dryline updraft. After the initial shearing instability develops, misocyclogenesis proceeds from tilting and stretching of vorticity by the persistent secondary dryline circulation. The resulting misocyclone evolution is discussed.

Corresponding author address: Michael S. Buban, Forecast Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.buban@noaa.gov
Save