Quantification of Cloud Microphysical Parameterization Uncertainty Using Radar Reflectivity

Marcus van Lier-Walqui Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Marcus van Lier-Walqui in
Current site
Google Scholar
PubMed
Close
,
Tomislava Vukicevic Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by Tomislava Vukicevic in
Current site
Google Scholar
PubMed
Close
, and
Derek J. Posselt University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Uncertainty in cloud microphysical parameterization—a leading order contribution to numerical weather prediction error—is estimated using a Markov chain Monte Carlo (MCMC) algorithm. An inversion is performed on 10 microphysical parameters using radar reflectivity observations with vertically covarying error as the likelihood constraint. An idealized 1D atmospheric column model with prescribed forcing is used to simulate the microphysical behavior of a midlatitude squall line. Novel diagnostics are employed for the probabilistic investigation of individual microphysical process behavior vis-à-vis parameter uncertainty. Uncertainty in the microphysical parameterization is presented via posterior probability density functions (PDFs) of parameters, observations, and microphysical processes. The results of this study show that radar reflectivity observations, as expected, provide a much stronger constraint on microphysical parameters than column-integral observations, in most cases reducing both the variance and bias in the maximum likelihood estimate of parameter values. This highlights the enhanced potential of radar reflectivity observations to provide information about microphysical processes within convective storm systems despite the presence of strongly nonlinear relationships within the microphysics model. The probabilistic analysis of parameterization uncertainty in terms of both parameter and process activity PDFs suggest the prospect of a stochastic representation of microphysical parameterization uncertainty—specifically the results indicate that error may be more easily represented and estimated by microphysical process uncertainty rather than microphysical parameter uncertainty. In addition, these new methods of analysis allow for a detailed investigation of the full nonlinear and multivariate relationships between microphysical parameters, microphysical processes, and radar observations.

Corresponding author address: Marcus van Lier-Walqui, RSMAS, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33130. E-mail: mvanlier-walqui@rsmas.miami.edu

Abstract

Uncertainty in cloud microphysical parameterization—a leading order contribution to numerical weather prediction error—is estimated using a Markov chain Monte Carlo (MCMC) algorithm. An inversion is performed on 10 microphysical parameters using radar reflectivity observations with vertically covarying error as the likelihood constraint. An idealized 1D atmospheric column model with prescribed forcing is used to simulate the microphysical behavior of a midlatitude squall line. Novel diagnostics are employed for the probabilistic investigation of individual microphysical process behavior vis-à-vis parameter uncertainty. Uncertainty in the microphysical parameterization is presented via posterior probability density functions (PDFs) of parameters, observations, and microphysical processes. The results of this study show that radar reflectivity observations, as expected, provide a much stronger constraint on microphysical parameters than column-integral observations, in most cases reducing both the variance and bias in the maximum likelihood estimate of parameter values. This highlights the enhanced potential of radar reflectivity observations to provide information about microphysical processes within convective storm systems despite the presence of strongly nonlinear relationships within the microphysics model. The probabilistic analysis of parameterization uncertainty in terms of both parameter and process activity PDFs suggest the prospect of a stochastic representation of microphysical parameterization uncertainty—specifically the results indicate that error may be more easily represented and estimated by microphysical process uncertainty rather than microphysical parameter uncertainty. In addition, these new methods of analysis allow for a detailed investigation of the full nonlinear and multivariate relationships between microphysical parameters, microphysical processes, and radar observations.

Corresponding author address: Marcus van Lier-Walqui, RSMAS, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33130. E-mail: mvanlier-walqui@rsmas.miami.edu
Save
  • Clark, A. J., W. A. Gallus Jr., and T.-C. Chen, 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136, 21402156.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., P. J. Connolly, T. W. Choularton, and P. R. Field, 2010: Evaluating the effects of microphysical complexity in idealised simulations of trade wind cumulus using the Factorial Method. Atmos. Chem. Phys. Discuss., 10, 23 49723 537, doi:10.5194/acpd-10-23497-2010.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., and M. Pfeifer, 2008: Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16, 109116.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, J. A. Hansen, D. P. Schanen, and B. M. Griffin, 2007: Elucidating model inadequacies in a cloud parameterization by use of an ensemble-based calibration framework. Mon. Wea. Rev., 135, 40774096.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, 2007: A multipurpose radar simulator package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., Y. Xia, M. K. Sen, and P. L. Stoffa, 2003: Optimal parameter and uncertainty estimation of a land surface model: A case study using data from Cabauw, Netherlands. J. Geophys. Res., 108, 4583, doi:10.1029/2002JD002991.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman, 2008: Error reduction and convergence in climate prediction. J. Climate, 21, 66986709.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus Jr., M. Segal, and S. E. Koch, 2007: Influence of initial conditions on the WRF-ARW model QPF response to physical parameterization changes. Wea. Forecasting, 22, 501519.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., P. Räisänen, M. Laine, J. Tamminen, A. Ilin, E. Oja, A. Solonen, and H. Haario, 2010: Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos. Chem. Phys., 10, 999310 002.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., M. Laine, A. Solonen, and H. Haario, 2012: Ensemble prediction and parameter estimation system: The concept. Quart. J. Roy. Meteor. Soc., 138, 281288, doi:10.1002/qj.923.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164.

    • Search Google Scholar
    • Export Citation
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci., 66, 321.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2004: Exploring parameter sensitivities of the land surface using a locally coupled land atmosphere model. J. Geophys. Res., 109, D21101, doi:10.1029/2004JD004730.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 16251632.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 9851004.

    • Search Google Scholar
    • Export Citation
  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21 (6), 10871092.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Mosegaard, K., and A. Tarantola, 2002: Probabilistic approach to inverse problems. International Handbook of Earthquake & Engineering Seismology, W. H. K. Lee et al., Eds., Academic Press, 237–265.

  • Ott, L. E., and Coauthors, 2009: Analysis of convective transport and parameter sensitivity in a single column version of the Goddard Earth Observation System, version 5, general circulation model. J. Atmos. Sci., 66, 627646.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2006: Application of advanced data assimilation techniques to the study of cloud and precipitation feedbacks in the tropical climate system. Ph.D. thesis, Colorado State University, Fort Collins, CO, 277 pp.

  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., T. S. L’Ecuyer, and G. L. Stephens, 2008: Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm. J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.

    • Search Google Scholar
    • Export Citation
  • Robert, C., and G. Casella, 2004: Monte Carlo Statistical Methods. 2nd ed. Springer Verlag, 645 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Sen, M. K., and P. L. Stoffa, 1996: Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical inversion. Geophys. Prospect., 44, 313350.

    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.1913, in press.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 (1), 3572.

  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Tao, W.-K., and Coauthors, 2003: Microphyics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 352 pp.

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and D. Posselt, 2008: Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci., 65, 28032823.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1985 1513 369
PDF Downloads 431 107 6