Improving High-Resolution Numerical Weather Simulations by Assimilating Data from an Unmanned Aerial System

Marius O. Jonassen University of Bergen, Bergen, Norway

Search for other papers by Marius O. Jonassen in
Current site
Google Scholar
PubMed
Close
,
Haraldur Ólafsson University of Bergen, Bergen, Norway, and Department of Physics, University of Iceland, Icelandic Meteorological Office, Reykjavik, Iceland

Search for other papers by Haraldur Ólafsson in
Current site
Google Scholar
PubMed
Close
,
Hálfdán Ágústsson Department of Physics, University of Iceland, and Institute for Meteorological Research, Reykjavik, Iceland

Search for other papers by Hálfdán Ágústsson in
Current site
Google Scholar
PubMed
Close
,
Ólafur Rögnvaldsson University of Bergen, Bergen, Norway, and Institute for Meteorological Research, Reykjavik, Iceland

Search for other papers by Ólafur Rögnvaldsson in
Current site
Google Scholar
PubMed
Close
, and
Joachim Reuder University of Bergen, Bergen, Norway

Search for other papers by Joachim Reuder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, it is demonstrated how temperature, humidity, and wind profile data from the lower troposphere obtained with a lightweight unmanned aerial system (UAS) can be used to improve high-resolution numerical weather simulations by four-dimensional data assimilation (FDDA). The combined UAS and FDDA system is applied to two case studies of northeasterly flow situations in southwest Iceland from the international Moso field campaign on 19 and 20 July 2009. Both situations were characterized by high diurnal boundary layer temperature variation leading to thermally driven flow, predominantly in the form of sea-breeze circulation along the coast. The data assimilation leads to an improvement in the simulation of the horizontal and vertical extension of the sea breeze as well as of the local background flow. Erroneously simulated fog over the Reykjanes peninsula on 19 July, which leads to a local temperature underestimation of 8 K, is also corrected by the data assimilation. Sensitivity experiments show that both the assimilation of wind data and temperature and humidity data are important for the assimilation results. UAS represents a novel instrument platform with a large potential within the atmospheric sciences. The presented method of using UAS data for assimilation into high-resolution numerical weather simulations is likely to have a wide range of future applications such as wind energy and improvements of targeted weather forecasts for search and rescue missions.

Corresponding author address: Marius O. Jonassen, Geophysical Institute, University of Bergen, Allegaten 70, Bergen 5007, Norway. E-mail: marius.jonassen@gfi.uib.no

Abstract

In this study, it is demonstrated how temperature, humidity, and wind profile data from the lower troposphere obtained with a lightweight unmanned aerial system (UAS) can be used to improve high-resolution numerical weather simulations by four-dimensional data assimilation (FDDA). The combined UAS and FDDA system is applied to two case studies of northeasterly flow situations in southwest Iceland from the international Moso field campaign on 19 and 20 July 2009. Both situations were characterized by high diurnal boundary layer temperature variation leading to thermally driven flow, predominantly in the form of sea-breeze circulation along the coast. The data assimilation leads to an improvement in the simulation of the horizontal and vertical extension of the sea breeze as well as of the local background flow. Erroneously simulated fog over the Reykjanes peninsula on 19 July, which leads to a local temperature underestimation of 8 K, is also corrected by the data assimilation. Sensitivity experiments show that both the assimilation of wind data and temperature and humidity data are important for the assimilation results. UAS represents a novel instrument platform with a large potential within the atmospheric sciences. The presented method of using UAS data for assimilation into high-resolution numerical weather simulations is likely to have a wide range of future applications such as wind energy and improvements of targeted weather forecasts for search and rescue missions.

Corresponding author address: Marius O. Jonassen, Geophysical Institute, University of Bergen, Allegaten 70, Bergen 5007, Norway. E-mail: marius.jonassen@gfi.uib.no
Save
  • Alapaty, K., N. L. Seaman, N. S. Devdutta, and A. F. Hanna, 2001: Assimilating surface data to improve the accuracy of atmospheric boundary layer simulations. J. Appl. Meteor., 40, 20682082.

    • Search Google Scholar
    • Export Citation
  • Anthes, R., 1974: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci., 31, 702718.

  • Brisset, P., A. Drouin, M. Gorraz, P.-S. Huard, and J. Tyler, 2006: The Paparazzi Solution. ENAC, Toulouse, France, 15 pp. [Available online at http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf.]

  • Bromwich, D. H., L. Bai, and G. G. Bjarnason, 2005: High-resolution regional climate simulations over Iceland using Polar MM5. Mon. Wea. Rev., 133, 35273547.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., J. Manobianco, J. E. Lane, C. D. Immer, and F. J. Merceret, 2004: An objective technique for verifying sea breezes in high-resolution numerical weather prediction models. Wea. Forecasting, 19, 690705.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. Maslanik, G. Holland, and J. Pinto, 2004: Applications of aerosondes in the Arctic. Bull. Amer. Meteor. Soc., 85, 18551861.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Einarsson, M. A., 1971: Meteorology (in Icelandic). Idunn Publishers, 99 pp.

  • Fast, J. D., 1995: Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain. J. Appl. Meteor., 34, 27622782.

    • Search Google Scholar
    • Export Citation
  • Fuentes, M., L. Chen, J. M. Davis, and G. M. Lackmann, 2005: Modeling and predicting complex space-time structures and patterns of coastal wind fields. Environmetrics, 16, 449464.

    • Search Google Scholar
    • Export Citation
  • Gahmberg, M., H. Savijärvi, and M. Leskinen, 2010: The influence of synoptic scale flow on sea breeze induced surface winds and calm zones. Tellus, 62A, 209217.

    • Search Google Scholar
    • Export Citation
  • Giebel, G., S. U. Paulsen, J. Bange, A. la Cour-Harbo, J. Reuder, S. Mayer, A. van den Kroonenberg, and J. Mølgaard, 2012: Autonomous aerial sensors for wind power meteorology—A pre-project. Rep. R-1798(EN), Risø DTU, 90 pp. [Available online at http://orbit.dtu.dk/fedora/objects/orbit:110631/datastreams/file_7726678/content.]

  • Grønås, S., and A. D. Sandvik, 1998: Numerical simulations of sea and land breezes at high latitudes. Tellus, 50A, 468489.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment process. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Jonassen, M. O., 2008: The Small Unmanned Meteorological Observer (SUMO)—Characerization and test of a new measurement system for atmospheric boundary layer research. M.S. thesis, Geophysical Institute, University of Bergen, Bergen, Norway, 125 pp. [Available online at http://web.gfi.uib.no/forskning/Master/Master_Jonassen.pdf.]

  • Jónsson, T., 2002: A brief investigation of diurnal variation of wind speed and wind directions in June (in Icelandic). Veðurstofa Íslands (Icelandic Meteorological Office), Tech. Rep. 02030, 12 pp.

  • Konrad, T., M. Hill, J. Rowland, and J. H. Meyer, 1970: A small, radio-controlled aircraft as a platform for meteorological sensors. Appl. Phys. Lab. Tech. Dig., 11, 1119.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and Coauthors, 1999: The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts. Bull. Amer. Meteor. Soc., 80, 13631384.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., A. Bourgeois, T. Warner, S. Swerdin, and J. Hacker, 2005: Implementation of observation-nudging based FDDA into WRF for supporting ATEC test operations. Proc. Sixth WRF/15th MM5 Users Workshop, Boulder, CO, NCAR, 1–4.

  • Liu, Y., and Coauthors, 2011: Simultaneous nested modeling from the synoptic to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn., 99, 308319.

    • Search Google Scholar
    • Export Citation
  • Martin, S., J. Bange, and F. Beyrich, 2010: Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo.” Atmos. Meas. Tech. Discuss., 3, 51795209, doi:10.5194/amtd-3-5179-2010.

    • Search Google Scholar
    • Export Citation
  • Mayer, S., A. Sandvik, M. O. Jonassen, and J. Reuder, 2010: Atmospheric profiling with the UAS SUMO: A new perspective for the evaluation of fine-scale atmospheric models. Meteor. Atmos. Phys., 116, 1526, doi:10.1007/s00703-010-0063-2.

    • Search Google Scholar
    • Export Citation
  • Mayer, S., G. Hattenberger, P. Brisset, M. O. Jonassen, and J. Reuder, 2012: A ‘no-flow-sensor’ wind estimation algorithm for Unmanned Aerial Systems. Int. J. Micro Air Vehicles, 4, 1529.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Nance, L. B., and D. R. Durran, 1997: A modeling study of nonstationary trapped mountain lee waves. Part I: Mean-flow variability. J. Atmos. Sci., 54, 22752291.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., D. C. Hartung, D. D. Turner, R. A. Petersen, W. F. Feltz, and E. Janzon, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an Observing System Simulation Experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over South Florida. Mon. Wea. Rev., 102, 115139.

  • Pielke, R. A., 2002: Mesoscale Meteorological Modeling. 2nd ed. Academic Press, 676 pp.

  • Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 1631.

    • Search Google Scholar
    • Export Citation
  • Reen, B. P., and D. R. Stauffer, 2010: Data assimilation strategies in the planetary boundary layer. Bound.-Layer Meteor., 137, 237269.

    • Search Google Scholar
    • Export Citation
  • Reuder, J., P. Brisset, M. O. Jonassen, M. Müller, and S. Mayer, 2009: The Small Unmanned Meteorological Observer (SUMO): A new tool for atmospheric boundary layer research. Meteor. Z., 18, 141147.

    • Search Google Scholar
    • Export Citation
  • Reuder, J., and Coauthors, 2012a: FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland. Meteor. Atmos. Phys., 116, 113, doi:10.1007/s00703-010-0118-4.

    • Search Google Scholar
    • Export Citation
  • Reuder, J., M. O. Jonassen, and H. Ólafsson, 2012b: The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research. Acta Geophys., 60, 14541473, doi:10.2478/s11600-012-0042-8.

    • Search Google Scholar
    • Export Citation
  • Rögnvaldsson, O., 2011: Search and rescue software: Weather prediction system assists huminatarian aid. Meteor. Technol. Int., 76–78. [Available online at http://www.scribd.com/doc/91499670/MeteorologicalTechnologyInternational-Sept2011.]

  • Rögnvaldsson, O., H. Ágústsson, E. M. Einarson, H. Ólafsson, H. Björnsson, and O. G. B. Sveinsson, cited 2007: Status report for year one of the RAV project (In Icelandic). [Available online at http://thjarkur.orkugardur.is/wordpress/wp-content/uploads/RAVarsskyrsla2007.pdf.]

  • Schroeder, A. J., D. R. Stauffer, N. L. Seaman, A. Deng, A. M. Gibbs, G. K. Hunter, and G. S. Young, 2006: An automated high-resolution, rapidly relocatable meteorological nowcasting and prediction system. Mon. Wea. Rev., 134, 12371265.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note TN-475+STR, 125 pp.

  • Soler, M. R., R. Arasa, M. Merino, and M. Olid, 2011: Modelling local sea-breeze flow and associated dispersion patterns over a coastal area in North-East Spain: A case study. Bound.-Layer Meteor., 140, 3756.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434.

  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458.

    • Search Google Scholar
    • Export Citation
  • Van den Kroonenberg, A., T. Martin, M. Buschmann, P. Bange, and J. Vörsmann, 2008: Measuring the wind vector using the autonomous Mini Aerial Vehicle M2AV. J. Atmos. Oceanic Technol., 25, 19691982.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Anthes, and A. L. McNab, 1978: Numerical simulations with a three-dimensional mesoscale model. Mon. Wea. Rev., 106, 10791099.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., J. F. Bowers, S. P. Swerdlin, and B. A. Beitler, 2004: A rapidly deployable operational mesoscale modeling system for emergency-response applications. Bull. Amer. Meteor. Soc., 85, 709716.

    • Search Google Scholar
    • Export Citation
  • Xu, M., Y. Liu, C. A. Davis, and T. T. Warner, 2002: Sensitivity study on nudging parameters for a mesoscale FDDA system. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 4B.4. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47401.htm.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1112 476 28
PDF Downloads 262 72 7